Abstract:Synthetic data generation is a key technique in modern artificial intelligence, addressing data scarcity, privacy constraints, and the need for diverse datasets in training robust models. In this work, we propose a method for generating privacy-preserving high-quality synthetic tabular data using Tensor Networks, specifically Matrix Product States (MPS). We benchmark the MPS-based generative model against state-of-the-art models such as CTGAN, VAE, and PrivBayes, focusing on both fidelity and privacy-preserving capabilities. To ensure differential privacy (DP), we integrate noise injection and gradient clipping during training, enabling privacy guarantees via R\'enyi Differential Privacy accounting. Across multiple metrics analyzing data fidelity and downstream machine learning task performance, our results show that MPS outperforms classical models, particularly under strict privacy constraints. This work highlights MPS as a promising tool for privacy-aware synthetic data generation. By combining the expressive power of tensor network representations with formal privacy mechanisms, the proposed approach offers an interpretable and scalable alternative for secure data sharing. Its structured design facilitates integration into sensitive domains where both data quality and confidentiality are critical.
Abstract:Effective question classification is crucial for AI-driven educational tools, enabling adaptive learning systems to categorize questions by skill area, difficulty level, and competence. This classification not only supports educational diagnostics and analytics but also enhances complex tasks like information retrieval and question answering by associating questions with relevant categories. Traditional methods, often based on word embeddings and conventional classifiers, struggle to capture the nuanced relationships in natural language, leading to suboptimal performance. To address this, we propose a novel approach leveraging graph convolutional networks (GCNs), named Phrase Question-Graph Convolutional Network (PQ-GCN) to better model the inherent structure of questions. By representing questions as graphs -- where nodes signify words or phrases and edges denote syntactic or semantic relationships -- our method allows GCNs to learn from the interconnected nature of language more effectively. Additionally, we explore the incorporation of phrase-based features to enhance classification accuracy, especially in low-resource settings. Our findings demonstrate that GCNs, augmented with these features, offer a promising solution for more accurate and context-aware question classification, bridging the gap between graph neural network research and practical educational applications.