Abstract:Rechargeable lithium-ion (Li-ion) batteries are a ubiquitous element of modern technology. In the last decades, the production and design of such batteries and their adjacent embedded charging and safety protocols, denoted by Battery Management Systems (BMS), has taken central stage. A fundamental challenge to be addressed is the trade-off between the speed of charging and the ageing behavior, resulting in the loss of capacity in the battery cell. We rely on a high-fidelity physics-based battery model and propose an approach to data-driven charging and safety protocol design. Following a Counterexample-Guided Inductive Synthesis scheme, we combine Reinforcement Learning (RL) with recent developments in data-driven formal methods to obtain a hybrid control strategy: RL is used to synthesise the individual controllers, and a data-driven abstraction guides their partitioning into a switched structure, depending on the initial output measurements of the battery. The resulting discrete selection among RL-based controllers, coupled with the continuous battery dynamics, realises a hybrid system. When a design meets the desired criteria, the abstraction provides probabilistic guarantees on the closed-loop performance of the cell.
Abstract:Estimating the expectation of a Bernoulli random variable based on N independent trials is a classical problem in statistics, typically addressed using Binomial Proportion Confidence Intervals (BPCI). In the control systems community, many critical tasks-such as certifying the statistical safety of dynamical systems-can be formulated as BPCI problems. Conformal Prediction (CP), a distribution-free technique for uncertainty quantification, has gained significant attention in recent years and has been applied to various control systems problems, particularly to address uncertainties in learned dynamics or controllers. A variant known as training-conditional CP was recently employed to tackle the problem of safety certification. In this note, we highlight that the use of training-conditional CP in this context does not provide valid safety guarantees. We demonstrate why CP is unsuitable for BPCI problems and argue that traditional BPCI methods are better suited for statistical safety certification.