This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
To improve the reliability and interpretability of industrial process monitoring, this article proposes a Causal Graph Spatial-Temporal Autoencoder (CGSTAE). The network architecture of CGSTAE combines two components: a correlation graph structure learning module based on spatial self-attention mechanism (SSAM) and a spatial-temporal encoder-decoder module utilizing graph convolutional long-short term memory (GCLSTM). The SSAM learns correlation graphs by capturing dynamic relationships between variables, while a novel three-step causal graph structure learning algorithm is introduced to derive a causal graph from these correlation graphs. The algorithm leverages a reverse perspective of causal invariance principle to uncover the invariant causal graph from varying correlations. The spatial-temporal encoder-decoder, built with GCLSTM units, reconstructs time-series process data within a sequence-to-sequence framework. The proposed CGSTAE enables effective process monitoring and fault detection through two statistics in the feature space and residual space. Finally, we validate the effectiveness of CGSTAE in process monitoring through the Tennessee Eastman process and a real-world air separation process.
We introduce Adaptive Spectral Shaping, a data-driven framework for graph filtering that learns a reusable baseline spectral kernel and modulates it with a small set of Gaussian factors. The resulting multi-peak, multi-scale responses allocate energy to heterogeneous regions of the Laplacian spectrum while remaining interpretable via explicit centers and bandwidths. To scale, we implement filters with Chebyshev polynomial expansions, avoiding eigendecompositions. We further propose Transferable Adaptive Spectral Shaping (TASS): the baseline kernel is learned on source graphs and, on a target graph, kept fixed while only the shaping parameters are adapted, enabling few-shot transfer under matched compute. Across controlled synthetic benchmarks spanning graph families and signal regimes, Adaptive Spectral Shaping reduces reconstruction error relative to fixed-prototype wavelets and learned linear banks, and TASS yields consistent positive transfer. The framework provides compact spectral modules that plug into graph signal processing pipelines and graph neural networks, combining scalability, interpretability, and cross-graph generalization.
Advanced Persistent Threats (APTs) are sophisticated, long-term cyberattacks that are difficult to detect because they operate stealthily and often blend into normal system behavior. This paper presents a neuro-symbolic anomaly detection framework that combines a Graph Autoencoder (GAE) with rare pattern mining to identify APT-like activities in system-level provenance data. Our approach first constructs a process behavioral graph using k-Nearest Neighbors based on feature similarity, then learns normal relational structure using a Graph Autoencoder. Anomaly candidates are identified through deviations between observed and reconstructed graph structure. To further improve detection, we integrate an rare pattern mining module that discovers infrequent behavioral co-occurrences and uses them to boost anomaly scores for processes exhibiting rare signatures. We evaluate the proposed method on the DARPA Transparent Computing datasets and show that rare-pattern boosting yields substantial gains in anomaly ranking quality over the baseline GAE. Compared with existing unsupervised approaches on the same benchmark, our single unified model consistently outperforms individual context-based detectors and achieves performance competitive with ensemble aggregation methods that require multiple separate detectors. These results highlight the value of coupling graph-based representation learning with classical pattern mining to improve both effectiveness and interpretability in provenance-based security anomaly detection.
Understanding how local interactions give rise to global brain organization requires models that can represent information across multiple scales. We introduce a hierarchical self-supervised learning (SSL) framework that jointly learns node-, edge-, and graph-level embeddings, inspired by multimodal neuroimaging. We construct a controllable synthetic benchmark mimicking the topological properties of connectomes. Our four-stage evaluation protocol reveals a critical failure: the invariance-based SSL model is fundamentally misaligned with the benchmark's topological properties and is catastrophically outperformed by classical, topology-aware heuristics. Ablations confirm an objective mismatch: SSL objectives designed to be invariant to topological perturbations learn to ignore the very community structure that classical methods exploit. Our results expose a fundamental pitfall in applying generic graph SSL to connectome-like data. We present this framework as a cautionary case study, highlighting the need for new, topology-aware SSL objectives for neuro-AI research that explicitly reward the preservation of structure (e.g., modularity or motifs).
The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
We present a new paradigm for creating random features to approximate bi-variate functions (in particular, kernels) defined on general manifolds. This new mechanism of Manifold Random Features (MRFs) leverages discretization of the manifold and the recently introduced technique of Graph Random Features (GRFs) to learn continuous fields on manifolds. Those fields are used to find continuous approximation mechanisms that otherwise, in general scenarios, cannot be derived analytically. MRFs provide positive and bounded features, a key property for accurate, low-variance approximation. We show deep asymptotic connection between GRFs, defined on discrete graph objects, and continuous random features used for regular kernels. As a by-product of our method, we re-discover recently introduced mechanism of Gaussian kernel approximation applied in particular to improve linear-attention Transformers, considering simple random walks on graphs and by-passing original complex mathematical computations. We complement our algorithm with a rigorous theoretical analysis and verify in thorough experimental studies.
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
Solving large-scale capacitated vehicle routing problems (CVRP) is hindered by the high complexity of heuristics and the limited generalization of neural solvers on massive graphs. We propose OD-DEAL, an adversarial learning framework that tightly integrates hybrid genetic search (HGS) and online barycenter clustering (BCC) decomposition, and leverages high-fidelity knowledge distillation to transfer expert heuristic behavior. OD-DEAL trains a graph attention network (GAT)-based generative policy through a minimax game, in which divide-and-conquer strategies from a hybrid expert are distilled into dense surrogate rewards. This enables high-quality, clustering-free inference on large-scale instances. Empirical results demonstrate that OD-DEAL achieves state-of-the-art (SOTA) real-time CVRP performance, solving 10000-node instances with near-constant neural scaling. This uniquely enables the sub-second, heuristic-quality inference required for dynamic large-scale deployment.
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.