Abstract:We present a new paradigm for creating random features to approximate bi-variate functions (in particular, kernels) defined on general manifolds. This new mechanism of Manifold Random Features (MRFs) leverages discretization of the manifold and the recently introduced technique of Graph Random Features (GRFs) to learn continuous fields on manifolds. Those fields are used to find continuous approximation mechanisms that otherwise, in general scenarios, cannot be derived analytically. MRFs provide positive and bounded features, a key property for accurate, low-variance approximation. We show deep asymptotic connection between GRFs, defined on discrete graph objects, and continuous random features used for regular kernels. As a by-product of our method, we re-discover recently introduced mechanism of Gaussian kernel approximation applied in particular to improve linear-attention Transformers, considering simple random walks on graphs and by-passing original complex mathematical computations. We complement our algorithm with a rigorous theoretical analysis and verify in thorough experimental studies.
Abstract:Standard reinforcement learning from human feedback (RLHF) trains a reward model on pairwise preference data and then uses it for policy optimization. However, while reward models are optimized to capture relative preferences, existing policy optimization techniques rely on absolute reward magnitudes during training. In settings where the rewards are non-verifiable such as summarization, instruction following, and chat completion, this misalignment often leads to suboptimal performance. We introduce Group Ordinal Policy Optimization (GOPO), a policy optimization method that uses only the ranking of the rewards and discards their magnitudes. Our rank-based transformation of rewards provides several gains, compared to Group Relative Policy Optimization (GRPO), in settings with non-verifiable rewards: (1) consistently higher training/validation reward trajectories, (2) improved LLM-as-judge evaluations across most intermediate training steps, and (3) reaching a policy of comparable quality in substantially less training steps than GRPO. We demonstrate consistent improvements across a range of tasks and model sizes.