Zero-Shot Object Navigation in unknown environments poses significant challenges for Unmanned Aerial Vehicles (UAVs) due to the conflict between high-level semantic reasoning requirements and limited onboard computational resources. To address this, we present USS-Nav, a lightweight framework that incrementally constructs a Unified Spatio-Semantic scene graph and enables efficient Large Language Model (LLM)-augmented Zero-Shot Object Navigation in unknown environments. Specifically, we introduce an incremental Spatial Connectivity Graph generation method utilizing polyhedral expansion to capture global geometric topology, which is dynamically partitioned into semantic regions via graph clustering. Concurrently, open-vocabulary object semantics are instantiated and anchored to this topology to form a hierarchical environmental representation. Leveraging this hierarchical structure, we present a coarse-to-fine exploration strategy: LLM grounded in the scene graph's semantics to determine global target regions, while a local planner optimizes frontier coverage based on information gain. Experimental results demonstrate that our framework outperforms state-of-the-art methods in terms of computational efficiency and real-time update frequency (15 Hz) on a resource-constrained platform. Furthermore, ablation studies confirm the effectiveness of our framework, showing substantial improvements in Success weighted by Path Length (SPL). The source code will be made publicly available to foster further research.
Solving large-scale capacitated vehicle routing problems (CVRP) is hindered by the high complexity of heuristics and the limited generalization of neural solvers on massive graphs. We propose OD-DEAL, an adversarial learning framework that tightly integrates hybrid genetic search (HGS) and online barycenter clustering (BCC) decomposition, and leverages high-fidelity knowledge distillation to transfer expert heuristic behavior. OD-DEAL trains a graph attention network (GAT)-based generative policy through a minimax game, in which divide-and-conquer strategies from a hybrid expert are distilled into dense surrogate rewards. This enables high-quality, clustering-free inference on large-scale instances. Empirical results demonstrate that OD-DEAL achieves state-of-the-art (SOTA) real-time CVRP performance, solving 10000-node instances with near-constant neural scaling. This uniquely enables the sub-second, heuristic-quality inference required for dynamic large-scale deployment.
High-resolution spatial transcriptomics platforms, such as Xenium, generate single-cell images that capture both molecular and spatial context, but their extremely high dimensionality poses major challenges for representation learning and clustering. In this study, we analyze data from the Xenium platform, which captures high-resolution images of tumor microarray (TMA) tissues and converts them into cell-by-gene matrices suitable for computational analysis. We benchmark and extend nonnegative matrix factorization (NMF) for spatial transcriptomics by introducing two spatially regularized variants. First, we propose Spatial NMF (SNMF), a lightweight baseline that enforces local spatial smoothness by diffusing each cell's NMF factor vector over its spatial neighborhood. Second, we introduce Hybrid Spatial NMF (hSNMF), which performs spatially regularized NMF followed by Leiden clustering on a hybrid adjacency that integrates spatial proximity (via a contact-radius graph) and transcriptomic similarity through a tunable mixing parameter alpha. Evaluated on a cholangiocarcinoma dataset, SNMF and hSNMF achieve markedly improved spatial compactness (CHAOS < 0.004, Moran's I > 0.96), greater cluster separability (Silhouette > 0.12, DBI < 1.8), and higher biological coherence (CMC and enrichment) compared to other spatial baselines. Availability and implementation: https://github.com/ishtyaqmahmud/hSNMF
Cortical folding exhibits substantial inter-individual variability while preserving stable anatomical landmarks that enable fine-scale characterization of cortical organization. Among these, the three-hinge gyrus (3HG) serves as a key folding primitive, showing consistent topology yet meaningful variations in morphology, connectivity, and function. Existing landmark-based methods typically model each 3HG independently, ignoring that 3HGs form higher-order folding communities that capture mesoscale structure. This simplification weakens anatomical representation and makes one-to-one matching sensitive to positional variability and noise. We propose a spectral graph representation learning framework that models community-level folding units rather than isolated landmarks. Each 3HG is encoded using a dual-profile representation combining surface topology and structural connectivity. Subject-specific spectral clustering identifies coherent folding communities, followed by topological refinement to preserve anatomical continuity. For cross-subject correspondence, we introduce Joint Morphological-Geometric Matching, jointly optimizing geometric and morphometric similarity. Across over 1000 Human Connectome Project subjects, the resulting communities show reduced morphometric variance, stronger modular organization, improved hemispheric consistency, and superior alignment compared with atlas-based and landmark-based or embedding-based baselines. These findings demonstrate that community-level modeling provides a robust and anatomically grounded framework for individualized cortical characterization and reliable cross-subject correspondence.
We argue that existing training-free segmentation methods rely on an implicit and limiting assumption, that segmentation is a spectral graph partitioning problem over diffusion-derived affinities. Such approaches, based on global graph partitioning and eigenvector-based formulations of affinity matrices, suffer from several fundamental drawbacks, they require pre-selecting the number of clusters, induce boundary oversmoothing due to spectral relaxation, and remain highly sensitive to noisy or multi-modal affinity distributions. Moreover, many prior works neglect the importance of local neighborhood structure, which plays a crucial role in stabilizing affinity propagation and preserving fine-grained contours. To address these limitations, we reformulate training-free segmentation as a stochastic flow equilibrium problem over diffusion-induced affinity graphs, where segmentation emerges from a stochastic propagation process that integrates global diffusion attention with local neighborhoods extracted from stable diffusion, yielding a sparse yet expressive affinity structure. Building on this formulation, we introduce a Markov propagation scheme that performs random-walk-based label diffusion with an adaptive pruning strategy that suppresses unreliable transitions while reinforcing confident affinity paths. Experiments across seven widely used semantic segmentation benchmarks demonstrate that our method achieves state-of-the-art zero-shot performance, producing sharper boundaries, more coherent regions, and significantly more stable masks compared to prior spectral-clustering-based approaches.
Speaker diarization aims to segment audio recordings into regions corresponding to individual speakers. Although unsupervised speaker diarization is inherently challenging, the prospect of identifying speaker regions without pretraining or weak supervision motivates research on clustering techniques. In this work, we share the notable observation that measuring multiple kernel similarities of speaker embeddings to thereafter craft a sparse graph for spectral clustering in a principled manner is sufficient to achieve state-of-the-art performances in a fully unsupervised setting. Specifically, we consider four polynomial kernels and a degree one arccosine kernel to measure similarities in speaker embeddings, using which sparse graphs are constructed in a principled manner to emphasize local similarities. Experiments show the proposed approach excels in unsupervised speaker diarization over a variety of challenging environments in the DIHARD-III, AMI, and VoxConverse corpora. To encourage further research, our implementations are available at https://github.com/nikhilraghav29/MK-SGC-SC.
We propose an interpretable, graph-based framework for analyzing semantic shift in diachronic corpora. For each target word and time slice, we induce a word-centered semantic network that integrates distributional similarity from diachronic Skip-gram embeddings with lexical substitutability from time-specific masked language models. We identify sense-related structure by clustering the peripheral graph, align clusters across time via node overlap, and track change through cluster composition and normalized cluster mass. In an application study on a corpus of New York Times Magazine articles (1980 - 2017), we show that graph connectivity reflects polysemy dynamics and that the induced communities capture contrasting trajectories: event-driven sense replacement (trump), semantic stability with cluster over-segmentation effects (god), and gradual association shifts tied to digital communication (post). Overall, word-centered semantic graphs offer a compact and transparent representation for exploring sense evolution without relying on predefined sense inventories.
Graph Domain Adaptation (GDA) typically uses adversarial learning to align graph embeddings in Euclidean space. However, this paradigm suffers from two critical challenges: Structural Degeneration, where hierarchical and semantic representations are entangled, and Optimization Instability, which arises from oscillatory dynamics of minimax adversarial training. To tackle these issues, we propose DisRFM, a geometry-aware GDA framework that unifies Riemannian embedding and flow-based transport. First, to overcome structural degeneration, we embed graphs into a Riemannian manifold. By adopting polar coordinates, we explicitly disentangle structure (radius) from semantics (angle). Then, we enforce topology preservation through radial Wasserstein alignment and semantic discrimination via angular clustering, thereby preventing feature entanglement and collapse. Second, we address the instability of adversarial alignment by using Riemannian flow matching. This method learns a smooth vector field to guide source features toward the target along geodesic paths, guaranteeing stable convergence. The geometric constraints further guide the flow to maintain the disentangled structure during transport. Theoretically, we prove the asymptotic stability of the flow matching and derive a tighter bound for the target risk. Extensive experiments demonstrate that DisRFM consistently outperforms state-of-the-art methods.
While Large Language Models (LLMs) have demonstrated strong zero-shot reasoning capabilities, their deployment as embodied agents still faces fundamental challenges in long-horizon planning. Unlike open-ended text generation, embodied agents must decompose high-level intent into actionable sub-goals while strictly adhering to the logic of a dynamic, observed environment. Standard LLM planners frequently fail to maintain strategy coherence over extended horizons due to context window limitation or hallucinate transitions that violate constraints. We propose GiG, a novel planning framework that structures embodied agents' memory using a Graph-in-Graph architecture. Our approach employs a Graph Neural Network (GNN) to encode environmental states into embeddings, organizing these embeddings into action-connected execution trace graphs within an experience memory bank. By clustering these graph embeddings, the framework enables retrieval of structure-aware priors, allowing agents to ground current decisions in relevant past structural patterns. Furthermore, we introduce a novel bounded lookahead module that leverages symbolic transition logic to enhance the agents' planning capabilities through the grounded action projection. We evaluate our framework on three embodied planning benchmarks-Robotouille Synchronous, Robotouille Asynchronous, and ALFWorld. Our method outperforms state-of-the-art baselines, achieving Pass@1 performance gains of up to 22% on Robotouille Synchronous, 37% on Asynchronous, and 15% on ALFWorld with comparable or lower computational cost.
Network topology excels at structural predictions but fails to capture functional semantics encoded in biomedical literature. We present a retrieval-augmented generation (RAG) embedding framework that integrates graph neural network representations with dynamically retrieved literature-derived knowledge through contrastive learning. Benchmarking against ten embedding methods reveals task-specific complementarity: topology-focused methods achieve near-perfect link prediction (GCN: 0.983 AUROC), while RAG-GNN is the only method achieving positive silhouette scores for functional clustering (0.001 vs. negative scores for all baselines). Information-theoretic decomposition shows network topology contributes 77.3% of predictive information, while retrieved documents provide 8.6% unique information. Applied to cancer signaling networks (379 proteins, 3,498 interactions), the framework identifies DDR1 as a therapeutic target based on retrieved evidence of synthetic lethality with KRAS mutations. These results establish that topology-only and retrieval-augmented approaches serve complementary purposes: structural prediction tasks are solved by network topology alone, while functional interpretation uniquely benefits from retrieved knowledge.