



In this paper we propose MECAD, a novel approach for continual anomaly detection using a multi-expert architecture. Our system dynamically assigns experts to object classes based on feature similarity and employs efficient memory management to preserve the knowledge of previously seen classes. By leveraging an optimized coreset selection and a specialized replay buffer mechanism, we enable incremental learning without requiring full model retraining. Our experimental evaluation on the MVTec AD dataset demonstrates that the optimal 5-expert configuration achieves an average AUROC of 0.8259 across 15 diverse object categories while significantly reducing knowledge degradation compared to single-expert approaches. This framework balances computational efficiency, specialized knowledge retention, and adaptability, making it well-suited for industrial environments with evolving product types.
Recent studies have demonstrated that incorporating trainable prompts into pretrained models enables effective incremental learning. However, the application of prompts in incremental object detection (IOD) remains underexplored. Existing prompts pool based approaches assume disjoint class sets across incremental tasks, which are unsuitable for IOD as they overlook the inherent co-occurrence phenomenon in detection images. In co-occurring scenarios, unlabeled objects from previous tasks may appear in current task images, leading to confusion in prompts pool. In this paper, we hold that prompt structures should exhibit adaptive consolidation properties across tasks, with constrained updates to prevent catastrophic forgetting. Motivated by this, we introduce Parameterized Prompts for Incremental Object Detection (P$^2$IOD). Leveraging neural networks global evolution properties, P$^2$IOD employs networks as the parameterized prompts to adaptively consolidate knowledge across tasks. To constrain prompts structure updates, P$^2$IOD further engages a parameterized prompts fusion strategy. Extensive experiments on PASCAL VOC2007 and MS COCO datasets demonstrate that P$^2$IOD's effectiveness in IOD and achieves the state-of-the-art performance among existing baselines.
The primary objective of Continual Anomaly Detection (CAD) is to learn the normal patterns of new tasks under dynamic data distribution assumptions while mitigating catastrophic forgetting. Existing embedding-based CAD approaches continuously update a memory bank with new embeddings to adapt to sequential tasks. However, these methods require constructing class-specific sub-memory banks for each task, which restricts their flexibility and scalability. To address this limitation, we propose a novel CAD framework where all tasks share a unified memory bank. During training, the method incrementally updates embeddings within a fixed-size coreset, enabling continuous knowledge acquisition from sequential tasks without task-specific memory fragmentation. In the inference phase, anomaly scores are computed via a nearest-neighbor matching mechanism, achieving state-of-the-art detection accuracy. We validate the method through comprehensive experiments on MVTec AD and Visa datasets. Results show that our approach outperforms existing baselines, achieving average image-level AUROC scores of 0.972 (MVTec AD) and 0.891 (Visa). Notably, on a real-world electronic paper dataset, it demonstrates 100% accuracy in anomaly sample detection, confirming its robustness in practical scenarios. The implementation will be open-sourced on GitHub.
Recently, object detection models have witnessed notable performance improvements, particularly with transformer-based models. However, new objects frequently appear in the real world, requiring detection models to continually learn without suffering from catastrophic forgetting. Although Incremental Object Detection (IOD) has emerged to address this challenge, these existing models are still not practical due to their limited performance and prolonged inference time. In this paper, we introduce a novel framework for IOD, called Hier-DETR: Hierarchical Neural Collapse Detection Transformer, ensuring both efficiency and competitive performance by leveraging Neural Collapse for imbalance dataset and Hierarchical relation of classes' labels.
Open World Object Detection (OWOD) is a challenging computer vision task that extends standard object detection by (1) detecting and classifying unknown objects without supervision, and (2) incrementally learning new object classes without forgetting previously learned ones. The absence of ground truths for unknown objects makes OWOD tasks particularly challenging. Many methods have addressed this by using pseudo-labels for unknown objects. The recently proposed Probabilistic Objectness transformer-based open-world detector (PROB) is a state-of-the-art model that does not require pseudo-labels for unknown objects, as it predicts probabilistic objectness. However, this method faces issues with learning conflicts between objectness and class predictions. To address this issue and further enhance performance, we propose a novel model, Decoupled PROB. Decoupled PROB introduces Early Termination of Objectness Prediction (ETOP) to stop objectness predictions at appropriate layers in the decoder, resolving the learning conflicts between class and objectness predictions in PROB. Additionally, we introduce Task-Decoupled Query Initialization (TDQI), which efficiently extracts features of known and unknown objects, thereby improving performance. TDQI is a query initialization method that combines query selection and learnable queries, and it is a module that can be easily integrated into existing DETR-based OWOD models. Extensive experiments on OWOD benchmarks demonstrate that Decoupled PROB surpasses all existing methods across several metrics, significantly improving performance.
Graph class-incremental learning (GCIL) allows graph neural networks (GNNs) to adapt to evolving graph analytical tasks by incrementally learning new class knowledge while retaining knowledge of old classes. Existing GCIL methods primarily focus on a closed-set assumption, where all test samples are presumed to belong to previously known classes. Such an assumption restricts their applicability in real-world scenarios, where unknown classes naturally emerge during inference, and are absent during training. In this paper, we explore a more challenging open-set graph class-incremental learning scenario with two intertwined challenges: catastrophic forgetting of old classes, which impairs the detection of unknown classes, and inadequate open-set recognition, which destabilizes the retention of learned knowledge. To address the above problems, a novel OGCIL framework is proposed, which utilizes pseudo-sample embedding generation to effectively mitigate catastrophic forgetting and enable robust detection of unknown classes. To be specific, a prototypical conditional variational autoencoder is designed to synthesize node embeddings for old classes, enabling knowledge replay without storing raw graph data. To handle unknown classes, we employ a mixing-based strategy to generate out-of-distribution (OOD) samples from pseudo in-distribution and current node embeddings. A novel prototypical hypersphere classification loss is further proposed, which anchors in-distribution embeddings to their respective class prototypes, while repelling OOD embeddings away. Instead of assigning all unknown samples into one cluster, our proposed objective function explicitly models them as outliers through prototype-aware rejection regions, ensuring a robust open-set recognition. Extensive experiments on five benchmarks demonstrate the effectiveness of OGCIL over existing GCIL and open-set GNN methods.
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
The problem of data non-stationarity is commonly addressed in data stream processing. In a dynamic environment, methods should continuously be ready to analyze time-varying data -- hence, they should enable incremental training and respond to concept drifts. An equally important variability typical for non-stationary data stream environments is the emergence of new, previously unknown classes. Often, methods focus on one of these two phenomena -- detection of concept drifts or detection of novel classes -- while both difficulties can be observed in data streams. Additionally, concerning previously unknown observations, the topic of open set of classes has become particularly important in recent years, where the goal of methods is to efficiently classify within known classes and recognize objects outside the model competence. This article presents a strategy for synthetic data stream generation in which both concept drifts and the emergence of new classes representing unknown objects occur. The presented research shows how unsupervised drift detectors address the task of detecting novelty and concept drifts and demonstrates how the generated data streams can be utilized in the open set recognition task.




Real-time object detectors like YOLO achieve exceptional performance when trained on large datasets for multiple epochs. However, in real-world scenarios where data arrives incrementally, neural networks suffer from catastrophic forgetting, leading to a loss of previously learned knowledge. To address this, prior research has explored strategies for Class Incremental Learning (CIL) in Continual Learning for Object Detection (CLOD), with most approaches focusing on two-stage object detectors. However, existing work suggests that Learning without Forgetting (LwF) may be ineffective for one-stage anchor-free detectors like YOLO due to noisy regression outputs, which risk transferring corrupted knowledge. In this work, we introduce YOLO LwF, a self-distillation approach tailored for YOLO-based continual object detection. We demonstrate that when coupled with a replay memory, YOLO LwF significantly mitigates forgetting. Compared to previous approaches, it achieves state-of-the-art performance, improving mAP by +2.1% and +2.9% on the VOC and COCO benchmarks, respectively.
Incremental object detection (IOD) aims to cultivate an object detector that can continuously localize and recognize novel classes while preserving its performance on previous classes. Existing methods achieve certain success by improving knowledge distillation and exemplar replay for transformer-based detection frameworks, but the intrinsic forgetting mechanisms remain underexplored. In this paper, we dive into the cause of forgetting and discover forgetting imbalance between localization and recognition in transformer-based IOD, which means that localization is less-forgetting and can generalize to future classes, whereas catastrophic forgetting occurs primarily on recognition. Based on these insights, we propose a Divide-and-Conquer Amnesia (DCA) strategy, which redesigns the transformer-based IOD into a localization-then-recognition process. DCA can well maintain and transfer the localization ability, leaving decoupled fragile recognition to be specially conquered. To reduce feature drift in recognition, we leverage semantic knowledge encoded in pre-trained language models to anchor class representations within a unified feature space across incremental tasks. This involves designing a duplex classifier fusion and embedding class semantic features into the recognition decoding process in the form of queries. Extensive experiments validate that our approach achieves state-of-the-art performance, especially for long-term incremental scenarios. For example, under the four-step setting on MS-COCO, our DCA strategy significantly improves the final AP by 6.9%.