Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
Graph neural networks (GNNs) are widely used for learning on structured data, yet their ability to distinguish non-isomorphic graphs is fundamentally limited. These limitations are usually attributed to message passing; in this work we show that an independent bottleneck arises at the readout stage. Using finite-dimensional representation theory, we prove that all linear permutation-invariant readouts, including sum and mean pooling, factor through the Reynolds (group-averaging) operator and therefore project node embeddings onto the fixed subspace of the permutation action, erasing all non-trivial symmetry-aware components regardless of encoder expressivity. This yields both a new expressivity barrier and an interpretable characterization of what global pooling preserves or destroys. To overcome this collapse, we introduce projector-based invariant readouts that decompose node representations into symmetry-aware channels and summarize them with nonlinear invariant statistics, preserving permutation invariance while retaining information provably invisible to averaging. Empirically, swapping only the readout enables fixed encoders to separate WL-hard graph pairs and improves performance across multiple benchmarks, demonstrating that readout design is a decisive and under-appreciated factor in GNN expressivity.
LiDAR point clouds captured in rain or snow are often corrupted by weather-induced returns, which can degrade perception and safety-critical scene understanding. This paper proposes Intensity- and Distance-Aware Statistical Outlier Removal (IDSOR), a range-adaptive filtering method that jointly exploits intensity cues and neighborhood sparsity. By incorporating an empirical, range-dependent distribution of weather returns into the threshold design, IDSOR suppresses weather-induced points while preserving fine structural details without cumbersome manual parameter tuning. We also propose a variant that uses a previously proposed method to estimate the weather return distribution from data, and integrates it into IDSOR. Experiments on simulation-augmented level-crossing measurements and on the Winter Adverse Driving dataset (WADS) demonstrate that IDSOR achieves a favorable precision-recall trade-off, maintaining both precision and recall above 90% on WADS.
We consider a novel algorithm, for the completion of partially observed low-rank tensors, where each entry of the tensor can be chosen from a discrete finite alphabet set, such as in common image processing problems, where the entries represent the RGB values. The proposed low-rank tensor completion (TC) method builds on the conventional nuclear norm (NN) minimization-based low-rank TC paradigm, through the addition of a discrete-aware regularizer, which enforces discreteness in the objective of the problem, by an $\ell_0$-norm regularizer that is approximated by a continuous and differentiable function normalized via fractional programming (FP) under a proximal gradient (PG) framework, in order to solve the proposed problem. Simulation results demonstrate the superior performance of the new method both in terms of normalized mean square error (NMSE) and convergence, compared to the conventional state of-the-art (SotA) techniques, including NN minimization approaches, as well as a mixture of the latter with a matrix factorization approach.
Benchmarking the hundreds of functional connectivity (FC) modeling methods on large-scale fMRI datasets is critical for reproducible neuroscience. However, the combinatorial explosion of model-data pairings makes exhaustive evaluation computationally prohibitive, preventing such assessments from becoming a routine pre-analysis step. To break this bottleneck, we reframe the challenge of FC benchmarking by selecting a small, representative core-set whose sole purpose is to preserve the relative performance ranking of FC operators. We formalize this as a ranking-preserving subset selection problem and propose Structure-aware Contrastive Learning for Core-set Selection (SCLCS), a self-supervised framework to select these core-sets. SCLCS first uses an adaptive Transformer to learn each sample's unique FC structure. It then introduces a novel Structural Perturbation Score (SPS) to quantify the stability of these learned structures during training, identifying samples that represent foundational connectivity archetypes. Finally, while SCLCS identifies stable samples via a top-k ranking, we further introduce a density-balanced sampling strategy as a necessary correction to promote diversity, ensuring the final core-set is both structurally robust and distributionally representative. On the large-scale REST-meta-MDD dataset, SCLCS preserves the ground-truth model ranking with just 10% of the data, outperforming state-of-the-art (SOTA) core-set selection methods by up to 23.2% in ranking consistency (nDCG@k). To our knowledge, this is the first work to formalize core-set selection for FC operator benchmarking, thereby making large-scale operators comparisons a feasible and integral part of computational neuroscience. Code is publicly available on https://github.com/lzhan94swu/SCLCS
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
The deployment of pixel-based antennas and fluid antenna systems (FAS) is hindered by prohibitive channel state information (CSI) acquisition overhead. While radio maps enable proactive mode selection, reconstructing high-fidelity maps from sparse measurements is challenging. Existing physics-agnostic or data-driven methods often fail to recover fine-grained shadowing details under extreme sparsity. We propose a Physics-Regularized Low-Rank Tensor Completion (PR-LRTC) framework for radio map reconstruction. By modeling the signal field as a three-way tensor, we integrate environmental low-rankness with deterministic antenna physics. Specifically, we leverage Effective Aerial Degrees-of-Freedom (EADoF) theory to derive a differential gain topology map as a physical prior for regularization. The resulting optimization problem is solved via an efficient Alternating Direction Method of Multipliers (ADMM)-based algorithm. Simulations show that PR-LRTC achieves a 4 dB gain over baselines at a 10% sampling ratio. It effectively preserves sharp shadowing edges, providing a robust, physics-compliant solution for low-overhead beam management.
Visual autoregressive (VAR) models generate images through next-scale prediction, naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring human perception. In practice, this hierarchy can drift at inference time, as limited capacity and accumulated error cause the model to deviate from its coarse-to-fine nature. We revisit this limitation from an information-theoretic perspective and deduce that ensuring each scale contributes high-frequency content not explained by earlier scales mitigates the train-inference discrepancy. With this insight, we propose Scaled Spatial Guidance (SSG), training-free, inference-time guidance that steers generation toward the intended hierarchy while maintaining global coherence. SSG emphasizes target high-frequency signals, defined as the semantic residual, isolated from a coarser prior. To obtain this prior, we leverage a principled frequency-domain procedure, Discrete Spatial Enhancement (DSE), which is devised to sharpen and better isolate the semantic residual through frequency-aware construction. SSG applies broadly across VAR models leveraging discrete visual tokens, regardless of tokenization design or conditioning modality. Experiments demonstrate SSG yields consistent gains in fidelity and diversity while preserving low latency, revealing untapped efficiency in coarse-to-fine image generation. Code is available at https://github.com/Youngwoo-git/SSG.
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.