What is Argument Mining? Argument mining is a field of corpus-based discourse analysis that involves the automatic identification of argumentative structures in text.
Papers and Code
Jun 15, 2025
Abstract:This work presents an Argument Mining process that extracts argumentative entities from clinical texts and identifies their relationships using token classification and Natural Language Inference techniques. Compared to straightforward methods like text classification, this methodology demonstrates superior performance in data-scarce settings. By assessing the effectiveness of these methods in identifying argumentative structures that support or refute possible diagnoses, this research lays the groundwork for future tools that can provide evidence-based justifications for machine-generated clinical conclusions.
* Accepted in the journal Procesamiento del Lenguaje Natural
Via

Jun 17, 2025
Abstract:The widespread adoption of chat interfaces based on Large Language Models (LLMs) raises concerns about promoting superficial learning and undermining the development of critical thinking skills. Instead of relying on LLMs purely for retrieving factual information, this work explores their potential to foster deeper reasoning by generating critical questions that challenge unsupported or vague claims in debate interventions. This study is part of a shared task of the 12th Workshop on Argument Mining, co-located with ACL 2025, focused on automatic critical question generation. We propose a two-step framework involving two small-scale open source language models: a Questioner that generates multiple candidate questions and a Judge that selects the most relevant ones. Our system ranked first in the shared task competition, demonstrating the potential of the proposed LLM-based approach to encourage critical engagement with argumentative texts.
* Proceedings of the 12th Workshop on Argument Mining
Via

May 29, 2025
Abstract:Automated large-scale analysis of public discussions around contested issues like abortion requires detecting and understanding the use of arguments. While Large Language Models (LLMs) have shown promise in language processing tasks, their performance in mining topic-specific, pre-defined arguments in online comments remains underexplored. We evaluate four state-of-the-art LLMs on three argument mining tasks using datasets comprising over 2,000 opinion comments across six polarizing topics. Quantitative evaluation suggests an overall strong performance across the three tasks, especially for large and fine-tuned LLMs, albeit at a significant environmental cost. However, a detailed error analysis revealed systematic shortcomings on long and nuanced comments and emotionally charged language, raising concerns for downstream applications like content moderation or opinion analysis. Our results highlight both the promise and current limitations of LLMs for automated argument analysis in online comments.
Via

May 28, 2025
Abstract:Identifying arguments is a necessary prerequisite for various tasks in automated discourse analysis, particularly within contexts such as political debates, online discussions, and scientific reasoning. In addition to theoretical advances in understanding the constitution of arguments, a significant body of research has emerged around practical argument mining, supported by a growing number of publicly available datasets. On these benchmarks, BERT-like transformers have consistently performed best, reinforcing the belief that such models are broadly applicable across diverse contexts of debate. This study offers the first large-scale re-evaluation of such state-of-the-art models, with a specific focus on their ability to generalize in identifying arguments. We evaluate four transformers, three standard and one enhanced with contrastive pre-training for better generalization, on 17 English sentence-level datasets as most relevant to the task. Our findings show that, to varying degrees, these models tend to rely on lexical shortcuts tied to content words, suggesting that apparent progress may often be driven by dataset-specific cues rather than true task alignment. While the models achieve strong results on familiar benchmarks, their performance drops markedly when applied to unseen datasets. Nonetheless, incorporating both task-specific pre-training and joint benchmark training proves effective in enhancing both robustness and generalization.
* This paper has been accepted to ACL 2025 and will be published after
27.07.2025
Via

May 27, 2025
Abstract:The safety of autonomous systems in dynamic and hazardous environments poses significant challenges. This paper presents a testing approach named SCALOFT for systematically assessing the safety of an autonomous aerial drone in a mine. SCALOFT provides a framework for developing diverse test cases, real-time monitoring of system behaviour, and detection of safety violations. Detected violations are then logged with unique identifiers for detailed analysis and future improvement. SCALOFT helps build a safety argument by monitoring situation coverage and calculating a final coverage measure. We have evaluated the performance of this approach by deliberately introducing seeded faults into the system and assessing whether SCALOFT is able to detect those faults. For a small set of plausible faults, we show that SCALOFT is successful in this.
Via

May 17, 2025
Abstract:Argument mining has garnered increasing attention over the years, with the recent advancement of Large Language Models (LLMs) further propelling this trend. However, current argument relations remain relatively simplistic and foundational, struggling to capture the full scope of argument information, particularly when it comes to representing complex argument structures in real-world scenarios. To address this limitation, we propose 14 fine-grained relation types from both vertical and horizontal dimensions, thereby capturing the intricate interplay between argument components for a thorough understanding of argument structure. On this basis, we conducted extensive experiments on three tasks: argument component detection, relation prediction, and automated essay grading. Additionally, we explored the impact of writing quality on argument component detection and relation prediction, as well as the connections between discourse relations and argumentative features. The findings highlight the importance of fine-grained argumentative annotations for argumentative writing quality assessment and encourage multi-dimensional argument analysis.
* Accepted to ACL 2025; 13 pages, 3 figures
Via

May 04, 2025
Abstract:This review paper explores recent advancements and emerging approaches in Information Retrieval (IR) applied to Natural Language Processing (NLP). We examine traditional IR models such as Boolean, vector space, probabilistic, and inference network models, and highlight modern techniques including deep learning, reinforcement learning, and pretrained transformer models like BERT. We discuss key tools and libraries - Lucene, Anserini, and Pyserini - for efficient text indexing and search. A comparative analysis of sparse, dense, and hybrid retrieval methods is presented, along with applications in web search engines, cross-language IR, argument mining, private information retrieval, and hate speech detection. Finally, we identify open challenges and future research directions to enhance retrieval accuracy, scalability, and ethical considerations.
* 12 pages, 4 figures, comprehensive literature review covering six key
IR-NLP papers, plus keywords and full reference list
Via

Feb 20, 2025
Abstract:Argument mining algorithms analyze the argumentative structure of essays, making them a valuable tool for enhancing education by providing targeted feedback on the students' argumentation skills. While current methods often use encoder or encoder-decoder deep learning architectures, decoder-only models remain largely unexplored, offering a promising research direction. This paper proposes leveraging open-source, small Large Language Models (LLMs) for argument mining through few-shot prompting and fine-tuning. These models' small size and open-source nature ensure accessibility, privacy, and computational efficiency, enabling schools and educators to adopt and deploy them locally. Specifically, we perform three tasks: segmentation of student essays into arguments, classification of the arguments by type, and assessment of their quality. We empirically evaluate the models on the Feedback Prize - Predicting Effective Arguments dataset of grade 6-12 students essays and demonstrate how fine-tuned small LLMs outperform baseline methods in segmenting the essays and determining the argument types while few-shot prompting yields comparable performance to that of the baselines in assessing quality. This work highlights the educational potential of small, open-source LLMs to provide real-time, personalized feedback, enhancing independent learning and writing skills while ensuring low computational cost and privacy.
Via

Feb 12, 2025
Abstract:Particularly in the structure of global discourse, coherence plays a pivotal role in human text comprehension and is a hallmark of high-quality text. This is especially true for persuasive texts, where coherent argument structures support claims effectively. This paper discusses and proposes methods for detecting, extracting and representing these global discourse structures in a proccess called Argument(ation) Mining. We begin by defining key terms and processes of discourse structure analysis, then continue to summarize existing research on the matter, and identify shortcomings in current argument component extraction and classification methods. Furthermore, we will outline an architecture for argument mining that focuses on making models more generalisable while overcoming challenges in the current field of research by utilizing novel NLP techniques. This paper reviews current knowledge, summarizes recent works, and outlines our NLP pipeline, aiming to contribute to the theoretical understanding of global discourse structures.
Via

Feb 04, 2025
Abstract:Natural Language Processing (NLP) has seen remarkable advances in recent years, particularly with the emergence of Large Language Models that have achieved unprecedented performance across many tasks. However, these developments have mainly benefited a small number of high-resource languages such as English. The majority of languages still face significant challenges due to the scarcity of training data and computational resources. To address this issue, this thesis focuses on cross-lingual transfer learning, a research area aimed at leveraging data and models from high-resource languages to improve NLP performance for low-resource languages. Specifically, we focus on Sequence Labeling tasks such as Named Entity Recognition, Opinion Target Extraction, and Argument Mining. The research is structured around three main objectives: (1) advancing data-based cross-lingual transfer learning methods through improved translation and annotation projection techniques, (2) developing enhanced model-based transfer learning approaches utilizing state-of-the-art multilingual models, and (3) applying these methods to real-world problems while creating open-source resources that facilitate future research in low-resource NLP. More specifically, this thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method that leverages text-to-text multilingual models and machine translation systems. T-Projection significantly outperforms previous annotation projection methods by a wide margin. For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings using text-to-text models. Finally, we develop Medical mT5, the first multilingual text-to-text medical model, demonstrating the practical impact of our research on real-world applications.
* Doctoral Thesis: University of the Basque Country UPV/EHU
Via
