What is Argument Mining? Argument mining is a field of corpus-based discourse analysis that involves the automatic identification of argumentative structures in text.
Papers and Code
Feb 20, 2025
Abstract:Argument mining algorithms analyze the argumentative structure of essays, making them a valuable tool for enhancing education by providing targeted feedback on the students' argumentation skills. While current methods often use encoder or encoder-decoder deep learning architectures, decoder-only models remain largely unexplored, offering a promising research direction. This paper proposes leveraging open-source, small Large Language Models (LLMs) for argument mining through few-shot prompting and fine-tuning. These models' small size and open-source nature ensure accessibility, privacy, and computational efficiency, enabling schools and educators to adopt and deploy them locally. Specifically, we perform three tasks: segmentation of student essays into arguments, classification of the arguments by type, and assessment of their quality. We empirically evaluate the models on the Feedback Prize - Predicting Effective Arguments dataset of grade 6-12 students essays and demonstrate how fine-tuned small LLMs outperform baseline methods in segmenting the essays and determining the argument types while few-shot prompting yields comparable performance to that of the baselines in assessing quality. This work highlights the educational potential of small, open-source LLMs to provide real-time, personalized feedback, enhancing independent learning and writing skills while ensuring low computational cost and privacy.
Via

Feb 12, 2025
Abstract:Particularly in the structure of global discourse, coherence plays a pivotal role in human text comprehension and is a hallmark of high-quality text. This is especially true for persuasive texts, where coherent argument structures support claims effectively. This paper discusses and proposes methods for detecting, extracting and representing these global discourse structures in a proccess called Argument(ation) Mining. We begin by defining key terms and processes of discourse structure analysis, then continue to summarize existing research on the matter, and identify shortcomings in current argument component extraction and classification methods. Furthermore, we will outline an architecture for argument mining that focuses on making models more generalisable while overcoming challenges in the current field of research by utilizing novel NLP techniques. This paper reviews current knowledge, summarizes recent works, and outlines our NLP pipeline, aiming to contribute to the theoretical understanding of global discourse structures.
Via

Feb 04, 2025
Abstract:Natural Language Processing (NLP) has seen remarkable advances in recent years, particularly with the emergence of Large Language Models that have achieved unprecedented performance across many tasks. However, these developments have mainly benefited a small number of high-resource languages such as English. The majority of languages still face significant challenges due to the scarcity of training data and computational resources. To address this issue, this thesis focuses on cross-lingual transfer learning, a research area aimed at leveraging data and models from high-resource languages to improve NLP performance for low-resource languages. Specifically, we focus on Sequence Labeling tasks such as Named Entity Recognition, Opinion Target Extraction, and Argument Mining. The research is structured around three main objectives: (1) advancing data-based cross-lingual transfer learning methods through improved translation and annotation projection techniques, (2) developing enhanced model-based transfer learning approaches utilizing state-of-the-art multilingual models, and (3) applying these methods to real-world problems while creating open-source resources that facilitate future research in low-resource NLP. More specifically, this thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method that leverages text-to-text multilingual models and machine translation systems. T-Projection significantly outperforms previous annotation projection methods by a wide margin. For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings using text-to-text models. Finally, we develop Medical mT5, the first multilingual text-to-text medical model, demonstrating the practical impact of our research on real-world applications.
* Doctoral Thesis: University of the Basque Country UPV/EHU
Via

Dec 20, 2024
Abstract:We show that current open-source foundational LLMs possess instruction capability and German legal background knowledge that is sufficient for some legal analysis in an educational context. However, model capability breaks down in very specific tasks, such as the classification of "Gutachtenstil" appraisal style components, or with complex contexts, such as complete legal opinions. Even with extended context and effective prompting strategies, they cannot match the Bag-of-Words baseline. To combat this, we introduce a Retrieval Augmented Generation based prompt example selection method that substantially improves predictions in high data availability scenarios. We further evaluate the performance of pre-trained LLMs on two standard tasks for argument mining and automated essay scoring and find it to be more adequate. Throughout, pre-trained LLMs improve upon the baseline in scenarios with little or no labeled data with Chain-of-Thought prompting further helping in the zero-shot case.
* 11 pages
Via

Dec 18, 2024
Abstract:Rhetorical figures play an important role in our communication. They are used to convey subtle, implicit meaning, or to emphasize statements. We notice them in hate speech, fake news, and propaganda. By improving the systems for computational detection of rhetorical figures, we can also improve tasks such as hate speech and fake news detection, sentiment analysis, opinion mining, or argument mining. Unfortunately, there is a lack of annotated data, as well as qualified annotators that would help us build large corpora to train machine learning models for the detection of rhetorical figures. The situation is particularly difficult in languages other than English, and for rhetorical figures other than metaphor, sarcasm, and irony. To overcome this issue, we develop a web application called "Find your Figure" that facilitates the identification and annotation of German rhetorical figures. The application is based on the German Rhetorical ontology GRhOOT which we have specially adapted for this purpose. In addition, we improve the user experience with Retrieval Augmented Generation (RAG). In this paper, we present the restructuring of the ontology, the development of the web application, and the built-in RAG pipeline. We also identify the optimal RAG settings for our application. Our approach is one of the first to practically use rhetorical ontologies in combination with RAG and shows promising results.
* The 31st International Conference on Computational Linguistics
(COLING 2025)
Via

Nov 08, 2024
Abstract:We explore the capability of four open-sourcelarge language models (LLMs) in argumentation mining (AM). We conduct experiments on three different corpora; persuasive essays(PE), argumentative microtexts (AMT) Part 1 and Part 2, based on two argumentation mining sub-tasks: (i) argumentative discourse units classifications (ADUC), and (ii) argumentative relation classification (ARC). This work aims to assess the argumentation capability of open-source LLMs, including Mistral 7B, Mixtral8x7B, LlamA2 7B and LlamA3 8B in both, zero-shot and few-shot scenarios. Our analysis contributes to further assessing computational argumentation with open-source LLMs in future research efforts.
Via

Sep 25, 2024
Abstract:In the era of rapid Internet and social media platform development, individuals readily share their viewpoints online. The overwhelming quantity of these posts renders comprehensive analysis impractical. This necessitates an efficient recommendation system to filter and present significant, relevant opinions. Our research introduces a dual-pronged argument mining technique to improve recommendation system effectiveness, considering both professional and amateur investor perspectives. Our first strategy involves using the discrepancy between target and closing prices as an opinion indicator. The second strategy applies argument mining principles to score investors' opinions, subsequently ranking them by these scores. Experimental results confirm the effectiveness of our approach, demonstrating its ability to identify opinions with higher profit potential. Beyond profitability, our research extends to risk analysis, examining the relationship between recommended opinions and investor behaviors. This offers a holistic view of potential outcomes following the adoption of these recommended opinions.
Via

Oct 07, 2024
Abstract:Explaining Artificial Intelligence (AI) decisions is a major challenge nowadays in AI, in particular when applied to sensitive scenarios like medicine and law. However, the need to explain the rationale behind decisions is a main issue also for human-based deliberation as it is important to justify \textit{why} a certain decision has been taken. Resident medical doctors for instance are required not only to provide a (possibly correct) diagnosis, but also to explain how they reached a certain conclusion. Developing new tools to aid residents to train their explanation skills is therefore a central objective of AI in education. In this paper, we follow this direction, and we present, to the best of our knowledge, the first multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are enriched with a natural language explanation written by doctors. These explanations have been manually annotated with argument components (i.e., premise, claim) and argument relations (i.e., attack, support), resulting in the Multilingual CasiMedicos-Arg dataset which consists of 558 clinical cases in four languages (English, Spanish, French, Italian) with explanations, where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations. We conclude by showing how competitive baselines perform over this challenging dataset for the argument mining task.
* EMNLP 2024
* 9 pages
Via

Sep 27, 2024
Abstract:Rhetorical Role Labeling (RRL) of legal documents is pivotal for various downstream tasks such as summarization, semantic case search and argument mining. Existing approaches often overlook the varying difficulty levels inherent in legal document discourse styles and rhetorical roles. In this work, we propose HiCuLR, a hierarchical curriculum learning framework for RRL. It nests two curricula: Rhetorical Role-level Curriculum (RC) on the outer layer and Document-level Curriculum (DC) on the inner layer. DC categorizes documents based on their difficulty, utilizing metrics like deviation from a standard discourse structure and exposes the model to them in an easy-to-difficult fashion. RC progressively strengthens the model to discern coarse-to-fine-grained distinctions between rhetorical roles. Our experiments on four RRL datasets demonstrate the efficacy of HiCuLR, highlighting the complementary nature of DC and RC.
* Accepted to EMNLP 2024 Findings
Via

Aug 16, 2024
Abstract:Argument mining is natural language processing technology aimed at identifying arguments in text. Furthermore, the approach is being developed to identify the premises and claims of those arguments, and to identify the relationships between arguments including support and attack relationships. In this paper, we assume that an argument map contains the premises and claims of arguments, and support and attack relationships between them, that have been identified by argument mining. So from a piece of text, we assume an argument map is obtained automatically by natural language processing. However, to understand and to automatically analyse that argument map, it would be desirable to instantiate that argument map with logical arguments. Once we have the logical representation of the arguments in an argument map, we can use automated reasoning to analyze the argumentation (e.g. check consistency of premises, check validity of claims, and check the labelling on each arc corresponds with thw logical arguments). We address this need by using classical logic for representing the explicit information in the text, and using default logic for representing the implicit information in the text. In order to investigate our proposal, we consider some specific options for instantiation.
* Research note
Via
