Abstract:The widespread adoption of chat interfaces based on Large Language Models (LLMs) raises concerns about promoting superficial learning and undermining the development of critical thinking skills. Instead of relying on LLMs purely for retrieving factual information, this work explores their potential to foster deeper reasoning by generating critical questions that challenge unsupported or vague claims in debate interventions. This study is part of a shared task of the 12th Workshop on Argument Mining, co-located with ACL 2025, focused on automatic critical question generation. We propose a two-step framework involving two small-scale open source language models: a Questioner that generates multiple candidate questions and a Judge that selects the most relevant ones. Our system ranked first in the shared task competition, demonstrating the potential of the proposed LLM-based approach to encourage critical engagement with argumentative texts.
Abstract:Argument mining algorithms analyze the argumentative structure of essays, making them a valuable tool for enhancing education by providing targeted feedback on the students' argumentation skills. While current methods often use encoder or encoder-decoder deep learning architectures, decoder-only models remain largely unexplored, offering a promising research direction. This paper proposes leveraging open-source, small Large Language Models (LLMs) for argument mining through few-shot prompting and fine-tuning. These models' small size and open-source nature ensure accessibility, privacy, and computational efficiency, enabling schools and educators to adopt and deploy them locally. Specifically, we perform three tasks: segmentation of student essays into arguments, classification of the arguments by type, and assessment of their quality. We empirically evaluate the models on the Feedback Prize - Predicting Effective Arguments dataset of grade 6-12 students essays and demonstrate how fine-tuned small LLMs outperform baseline methods in segmenting the essays and determining the argument types while few-shot prompting yields comparable performance to that of the baselines in assessing quality. This work highlights the educational potential of small, open-source LLMs to provide real-time, personalized feedback, enhancing independent learning and writing skills while ensuring low computational cost and privacy.