Abstract:Identifying arguments is a necessary prerequisite for various tasks in automated discourse analysis, particularly within contexts such as political debates, online discussions, and scientific reasoning. In addition to theoretical advances in understanding the constitution of arguments, a significant body of research has emerged around practical argument mining, supported by a growing number of publicly available datasets. On these benchmarks, BERT-like transformers have consistently performed best, reinforcing the belief that such models are broadly applicable across diverse contexts of debate. This study offers the first large-scale re-evaluation of such state-of-the-art models, with a specific focus on their ability to generalize in identifying arguments. We evaluate four transformers, three standard and one enhanced with contrastive pre-training for better generalization, on 17 English sentence-level datasets as most relevant to the task. Our findings show that, to varying degrees, these models tend to rely on lexical shortcuts tied to content words, suggesting that apparent progress may often be driven by dataset-specific cues rather than true task alignment. While the models achieve strong results on familiar benchmarks, their performance drops markedly when applied to unseen datasets. Nonetheless, incorporating both task-specific pre-training and joint benchmark training proves effective in enhancing both robustness and generalization.
Abstract:Twitter has emerged as a global hub for engaging in online conversations and as a research corpus for various disciplines that have recognized the significance of its user-generated content. Argument mining is an important analytical task for processing and understanding online discourse. Specifically, it aims to identify the structural elements of arguments, denoted as information and inference. These elements, however, are not static and may require context within the conversation they are in, yet there is a lack of data and annotation frameworks addressing this dynamic aspect on Twitter. We contribute TACO, the first dataset of Twitter Arguments utilizing 1,814 tweets covering 200 entire conversations spanning six heterogeneous topics annotated with an agreement of 0.718 Krippendorff's alpha among six experts. Second, we provide our annotation framework, incorporating definitions from the Cambridge Dictionary, to define and identify argument components on Twitter. Our transformer-based classifier achieves an 85.06\% macro F1 baseline score in detecting arguments. Moreover, our data reveals that Twitter users tend to engage in discussions involving informed inferences and information. TACO serves multiple purposes, such as training tweet classifiers to manage tweets based on inference and information elements, while also providing valuable insights into the conversational reply patterns of tweets.