Abstract:The ubiquity of social media platforms facilitates malicious linguistic steganography, posing significant security risks. Steganalysis is profoundly hindered by the challenge of identifying subtle cognitive inconsistencies arising from textual fragmentation and complex dialogue structures, and the difficulty in achieving robust aggregation of multi-dimensional weak signals, especially given extreme steganographic sparsity and sophisticated steganography. These core detection difficulties are compounded by significant data imbalance. This paper introduces GSDFuse, a novel method designed to systematically overcome these obstacles. GSDFuse employs a holistic approach, synergistically integrating hierarchical multi-modal feature engineering to capture diverse signals, strategic data augmentation to address sparsity, adaptive evidence fusion to intelligently aggregate weak signals, and discriminative embedding learning to enhance sensitivity to subtle inconsistencies. Experiments on social media datasets demonstrate GSDFuse's state-of-the-art (SOTA) performance in identifying sophisticated steganography within complex dialogue environments. The source code for GSDFuse is available at https://github.com/NebulaEmmaZh/GSDFuse.
Abstract:The increasing deployment of intelligent agents in digital ecosystems, such as social media platforms, has raised significant concerns about traceability and accountability, particularly in cybersecurity and digital content protection. Traditional large language model (LLM) watermarking techniques, which rely on token-level manipulations, are ill-suited for agents due to the challenges of behavior tokenization and information loss during behavior-to-action translation. To address these issues, we propose Agent Guide, a novel behavioral watermarking framework that embeds watermarks by guiding the agent's high-level decisions (behavior) through probability biases, while preserving the naturalness of specific executions (action). Our approach decouples agent behavior into two levels, behavior (e.g., choosing to bookmark) and action (e.g., bookmarking with specific tags), and applies watermark-guided biases to the behavior probability distribution. We employ a z-statistic-based statistical analysis to detect the watermark, ensuring reliable extraction over multiple rounds. Experiments in a social media scenario with diverse agent profiles demonstrate that Agent Guide achieves effective watermark detection with a low false positive rate. Our framework provides a practical and robust solution for agent watermarking, with applications in identifying malicious agents and protecting proprietary agent systems.
Abstract:The widespread adoption of Retrieval-Augmented Generation (RAG) systems in real-world applications has heightened concerns about the confidentiality and integrity of their proprietary knowledge bases. These knowledge bases, which play a critical role in enhancing the generative capabilities of Large Language Models (LLMs), are increasingly vulnerable to breaches that could compromise sensitive information. To address these challenges, this paper proposes an advanced encryption methodology designed to protect RAG systems from unauthorized access and data leakage. Our approach encrypts both textual content and its corresponding embeddings prior to storage, ensuring that all data remains securely encrypted. This mechanism restricts access to authorized entities with the appropriate decryption keys, thereby significantly reducing the risk of unintended data exposure. Furthermore, we demonstrate that our encryption strategy preserves the performance and functionality of RAG pipelines, ensuring compatibility across diverse domains and applications. To validate the robustness of our method, we provide comprehensive security proofs that highlight its resilience against potential threats and vulnerabilities. These proofs also reveal limitations in existing approaches, which often lack robustness, adaptability, or reliance on open-source models. Our findings suggest that integrating advanced encryption techniques into the design and deployment of RAG systems can effectively enhance privacy safeguards. This research contributes to the ongoing discourse on improving security measures for AI-driven services and advocates for stricter data protection standards within RAG architectures.
Abstract:Large Language Models (LLMs) display formidable capabilities in generative tasks but also pose potential risks due to their tendency to generate hallucinatory responses. Uncertainty Quantification (UQ), the evaluation of model output reliability, is crucial for ensuring the safety and robustness of AI systems. Recent studies have concentrated on model uncertainty by analyzing the relationship between output entropy under various sampling conditions and the corresponding labels. However, these methods primarily focus on measuring model entropy with precision to capture response characteristics, often neglecting the uncertainties associated with greedy decoding results-the sources of model labels, which can lead to biased classification outcomes. In this paper, we explore the biases introduced by greedy decoding and propose a label-confidence-aware (LCA) uncertainty estimation based on Kullback-Leibler (KL) divergence bridging between samples and label source, thus enhancing the reliability and stability of uncertainty assessments. Our empirical evaluations across a range of popular LLMs and NLP datasets reveal that different label sources can indeed affect classification, and that our approach can effectively capture differences in sampling results and label sources, demonstrating more effective uncertainty estimation.
Abstract:In recent years, there has been an increasing number of information hiding techniques based on network streaming media, focusing on how to covertly and efficiently embed secret information into real-time transmitted network media signals to achieve concealed communication. The misuse of these techniques can lead to significant security risks, such as the spread of malicious code, commands, and viruses. Current steganalysis methods for network voice streams face two major challenges: efficient detection under low embedding rates and short duration conditions. These challenges arise because, with low embedding rates (e.g., as low as 10%) and short transmission durations (e.g., only 0.1 second), detection models struggle to acquire sufficiently rich sample features, making effective steganalysis difficult. To address these challenges, this paper introduces a Dual-View VoIP Steganalysis Framework (DVSF). The framework first randomly obfuscates parts of the native steganographic descriptors in VoIP stream segments, making the steganographic features of hard-to-detect samples more pronounced and easier to learn. It then captures fine-grained local features related to steganography, building on the global features of VoIP. Specially constructed VoIP segment triplets further adjust the feature distances within the model. Ultimately, this method effectively address the detection difficulty in VoIP. Extensive experiments demonstrate that our method significantly improves the accuracy of streaming voice steganalysis in these challenging detection scenarios, surpassing existing state-of-the-art methods and offering superior near-real-time performance.
Abstract:Incorporating visual knowledge into text-only dialogue systems has become a potential direction to imitate the way humans think, imagine, and communicate. However, existing multimodal dialogue systems are either confined by the scale and quality of available datasets or the coarse concept of visual knowledge. To address these issues, we provide a new paradigm of constructing multimodal dialogues as well as two datasets extended from text-only dialogues under such paradigm (ReSee-WoW, ReSee-DD). We propose to explicitly split the visual knowledge into finer granularity (``turn-level'' and ``entity-level''). To further boost the accuracy and diversity of augmented visual information, we retrieve them from the Internet or a large image dataset. To demonstrate the superiority and universality of the provided visual knowledge, we propose a simple but effective framework ReSee to add visual representation into vanilla dialogue models by modality concatenations. We also conduct extensive experiments and ablations w.r.t. different model configurations and visual knowledge settings. Empirical, encouraging results not only demonstrate the effectiveness of introducing visual knowledge at both entity and turn level but also verify the proposed model ReSee outperforms several state-of-the-art methods on automatic and human evaluations. By leveraging text and vision knowledge, ReSee can produce informative responses with real-world visual concepts.
Abstract:Controllable text generation has taken a gigantic step forward these days. Yet existing methods are either constrained in a one-off pattern or not efficient enough for receiving multiple conditions at every generation stage. We propose a model-agnostic framework Plug-in Conditional Auto-Encoder for Controllable Text Generation (PCAE) towards flexible and semi-supervised text generation. Our framework is "plug-and-play" with partial parameters to be fine-tuned in the pre-trained model (less than a half). Crucial to the success of PCAE is the proposed broadcasting label fusion network for navigating the global latent code to a specified local and confined space. Visualization of the local latent prior well confirms the primary devotion in hidden space of the proposed model. Moreover, extensive experiments across five related generation tasks (from 2 conditions up to 10 conditions) on both RNN- based and pre-trained BART [26] based auto-encoders reveal the high capability of PCAE, which enables generation that is highly manipulable, syntactically diverse and time-saving with minimum labeled samples. We will release our code at https://github.com/ImKeTT/pcae.
Abstract:Vertical federated learning (VFL) is a privacy-preserving machine learning paradigm that can learn models from features distributed on different platforms in a privacy-preserving way. Since in real-world applications the data may contain bias on fairness-sensitive features (e.g., gender), VFL models may inherit bias from training data and become unfair for some user groups. However, existing fair ML methods usually rely on the centralized storage of fairness-sensitive features to achieve model fairness, which are usually inapplicable in federated scenarios. In this paper, we propose a fair vertical federated learning framework (FairVFL), which can improve the fairness of VFL models. The core idea of FairVFL is to learn unified and fair representations of samples based on the decentralized feature fields in a privacy-preserving way. Specifically, each platform with fairness-insensitive features first learns local data representations from local features. Then, these local representations are uploaded to a server and aggregated into a unified representation for the target task. In order to learn fair unified representations, we send them to each platform storing fairness-sensitive features and apply adversarial learning to remove bias from the unified representations inherited from the biased data. Moreover, for protecting user privacy, we further propose a contrastive adversarial learning method to remove privacy information from the unified representations in server before sending them to the platforms keeping fairness-sensitive features. Experiments on two real-world datasets validate that our method can effectively improve model fairness with user privacy well-protected.
Abstract:Variational Auto-Encoder (VAE) has become the de-facto learning paradigm in achieving both representation learning and generation for natural language. However, existing VAE-based language models either employ elementary RNNs, which is not powerful to handle complex situations, or fine-tunes two pre-trained language models (PLMs) for any downstream task, which is a huge drain on resources. In this paper, we introduce the first VAE framework empowered with adaptive GPT-2s (AdaVAE). Different from existing systems, we unify both the encoder\&decoder of VAE model using GPT-2s with adaptive parameter-efficient components. Experiments from multiple dimensions validate that AdaVAE is competent to better organize language in generation task and representation modeling, even with less than $15\%$ activated parameters in training. Our code is available at \url{https://github.com/ImKeTT/adavae}.
Abstract:In this letter, we explored generative image steganography based on autoregressive models. We proposed Pixel-Stega, which implements pixel-level information hiding with autoregressive models and arithmetic coding algorithm. Firstly, one of the autoregressive models, PixelCNN++, is utilized to produce explicit conditional probability distribution of each pixel. Secondly, secret messages are encoded to the selection of pixels through steganographic sampling (stegosampling) based on arithmetic coding. We carried out qualitative and quantitative assessment on gray-scale and colour image datasets. Experimental results show that Pixel-Stega is able to embed secret messages adaptively according to the entropy of the pixels to achieve both high embedding capacity (up to 4.3 bpp) and nearly perfect imperceptibility (about 50% detection accuracy).