Abstract:Graph Neural Networks (GNNs) have demonstrated remarkable efficacy in handling graph-structured data; however, they exhibit failures after deployment, which can cause severe consequences. Hence, conducting thorough testing before deployment becomes imperative to ensure the reliability of GNNs. However, thorough testing requires numerous manually annotated test data. To mitigate the annotation cost, strategically prioritizing and labeling high-quality unlabeled inputs for testing becomes crucial, which facilitates uncovering more model failures with a limited labeling budget. Unfortunately, existing test input prioritization techniques either overlook the valuable information contained in graph structures or are overly reliant on attributes extracted from the target model, i.e., model-aware attributes, whose quality can vary significantly. To address these issues, we propose a novel test input prioritization framework, named GraphRank, for GNNs. GraphRank introduces model-agnostic attributes to compensate for the limitations of the model-aware ones. It also leverages the graph structure information to aggregate attributes from neighboring nodes, thereby enhancing the model-aware and model-agnostic attributes. Furthermore, GraphRank combines the above attributes with a binary classifier, using it as a ranking model to prioritize inputs. This classifier undergoes iterative training, which enables it to learn from each round's feedback and improve its performance accordingly. Extensive experiments demonstrate GraphRank's superiority over existing techniques.
Abstract:Backdoor attacks pose a significant threat to the security and reliability of deep learning models. To mitigate such attacks, one promising approach is to learn to extract features from the target model and use these features for backdoor detection. However, we discover that existing learning-based neural backdoor detection methods do not generalize well to new architectures not seen during the learning phase. In this paper, we analyze the root cause of this issue and propose a novel black-box neural backdoor detection method called ArcGen. Our method aims to obtain architecture-invariant model features, i.e., aligned features, for effective backdoor detection. Specifically, in contrast to existing methods directly using model outputs as model features, we introduce an additional alignment layer in the feature extraction function to further process these features. This reduces the direct influence of architecture information on the features. Then, we design two alignment losses to train the feature extraction function. These losses explicitly require that features from models with similar backdoor behaviors but different architectures are aligned at both the distribution and sample levels. With these techniques, our method demonstrates up to 42.5% improvements in detection performance (e.g., AUC) on unseen model architectures. This is based on a large-scale evaluation involving 16,896 models trained on diverse datasets, subjected to various backdoor attacks, and utilizing different model architectures. Our code is available at https://github.com/SeRAlab/ArcGen.
Abstract:Large Language Models (LLMs) have demonstrated extraordinary performance across a broad array of applications, from traditional language processing tasks to interpreting structured sequences like time-series data. Yet, their effectiveness in fast-paced, online decision-making environments requiring swift, accurate, and concurrent responses poses a significant challenge. This paper introduces TStreamLLM, a revolutionary framework integrating Transactional Stream Processing (TSP) with LLM management to achieve remarkable scalability and low latency. By harnessing the scalability, consistency, and fault tolerance inherent in TSP, TStreamLLM aims to manage continuous & concurrent LLM updates and usages efficiently. We showcase its potential through practical use cases like real-time patient monitoring and intelligent traffic management. The exploration of synergies between TSP and LLM management can stimulate groundbreaking developments in AI and database research. This paper provides a comprehensive overview of challenges and opportunities in this emerging field, setting forth a roadmap for future exploration and development.