Abstract:Large Language Models (LLMs) with inference-time scaling techniques show promise for code generation, yet face notable efficiency and scalability challenges. Construction-based tree-search methods suffer from rapid growth in tree size, high token consumption, and lack of anytime property. In contrast, improvement-based methods offer better performance but often struggle with uninformative reward signals and inefficient search strategies. In this work, we propose \textbf{ReLoc}, a unified local search framework which effectively performs step-by-step code revision. Specifically, ReLoc explores a series of local revisions through four key algorithmic components: initial code drafting, neighborhood code generation, candidate evaluation, and incumbent code updating, each of which can be instantiated with specific decision rules to realize different local search algorithms such as Hill Climbing (HC) or Genetic Algorithm (GA). Furthermore, we develop a specialized revision reward model that evaluates code quality based on revision distance to produce fine-grained preferences that guide the local search toward more promising candidates. Finally, our extensive experimental results demonstrate that our approach achieves superior performance across diverse code generation tasks, significantly outperforming both construction-based tree search as well as the state-of-the-art improvement-based code generation methods.
Abstract:Online fine-tuning vision-language model (VLM) agents with reinforcement learning (RL) has shown promise for equipping agents with multi-step, goal-oriented capabilities in dynamic environments. However, their open-ended textual action space and non-end-to-end nature of action generation present significant challenges to effective online exploration in RL, e.g., explosion of the exploration space. We propose a novel online fine-tuning method, Counterfactual Soft Reinforcement Learning (CoSo), better suited to the textual output space of VLM agents. Compared to prior methods that assign uniform uncertainty to all tokens, CoSo leverages counterfactual reasoning to dynamically assess the causal influence of individual tokens on post-processed actions. By prioritizing the exploration of action-critical tokens while reducing the impact of semantically redundant or low-impact tokens, CoSo enables a more targeted and efficient online rollout process. We provide theoretical analysis proving CoSo's convergence and policy improvement guarantees, and extensive empirical evaluations supporting CoSo's effectiveness. Our results across a diverse set of agent tasks, including Android device control, card gaming, and embodied AI, highlight its remarkable ability to enhance exploration efficiency and deliver consistent performance gains. The code is available at https://github.com/langfengQ/CoSo.