Abstract:The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
Abstract:In the context of the rapid development of large language models, we have meticulously trained and introduced the GujiBERT and GujiGPT language models, which are foundational models specifically designed for intelligent information processing of ancient texts. These models have been trained on an extensive dataset that encompasses both simplified and traditional Chinese characters, allowing them to effectively handle various natural language processing tasks related to ancient books, including but not limited to automatic sentence segmentation, punctuation, word segmentation, part-of-speech tagging, entity recognition, and automatic translation. Notably, these models have exhibited exceptional performance across a range of validation tasks using publicly available datasets. Our research findings highlight the efficacy of employing self-supervised methods to further train the models using classical text corpora, thus enhancing their capability to tackle downstream tasks. Moreover, it is worth emphasizing that the choice of font, the scale of the corpus, and the initial model selection all exert significant influence over the ultimate experimental outcomes. To cater to the diverse text processing preferences of researchers in digital humanities and linguistics, we have developed three distinct categories comprising a total of nine model variations. We believe that by sharing these foundational language models specialized in the domain of ancient texts, we can facilitate the intelligent processing and scholarly exploration of ancient literary works and, consequently, contribute to the global dissemination of China's rich and esteemed traditional culture in this new era.