Abstract:Emotion understanding is critical for making Large Language Models (LLMs) more general, reliable, and aligned with humans. Art conveys emotion through the joint design of visual and auditory elements, yet most prior work is human-centered or single-modality, overlooking the emotion intentionally expressed by the artwork. Meanwhile, current Audio-Visual Language Models (AVLMs) typically require large-scale audio pretraining to endow Visual Language Models (VLMs) with hearing, which limits scalability. We present Vision Anchored Audio-Visual Emotion LLM (VAEmotionLLM), a two-stage framework that teaches a VLM to hear by seeing with limited audio pretraining and to understand emotion across modalities. In Stage 1, Vision-Guided Audio Alignment (VG-Align) distills the frozen visual pathway into a new audio pathway by aligning next-token distributions of the shared LLM on synchronized audio-video clips, enabling hearing without a large audio dataset. In Stage 2, a lightweight Cross-Modal Emotion Adapter (EmoAdapter), composed of the Emotion Enhancer and the Emotion Supervisor, injects emotion-sensitive residuals and applies emotion supervision to enhance cross-modal emotion understanding. We also construct ArtEmoBenchmark, an art-centric emotion benchmark that evaluates content and emotion understanding under audio-only, visual-only, and audio-visual inputs. VAEmotionLLM achieves state-of-the-art results on ArtEmoBenchmark, outperforming audio-only, visual-only, and audio-visual baselines. Ablations show that the proposed components are complementary.
Abstract:The intangible cultural heritage (ICH) of China, a cultural asset transmitted across generations by various ethnic groups, serves as a significant testament to the evolution of human civilization and holds irreplaceable value for the preservation of historical lineage and the enhancement of cultural self-confidence. However, the rapid pace of modernization poses formidable challenges to ICH, including threats damage, disappearance and discontinuity of inheritance. China has the highest number of items on the UNESCO Intangible Cultural Heritage List, which is indicative of the nation's abundant cultural resources and emphasises the pressing need for ICH preservation. In recent years, the rapid advancements in large language modelling have provided a novel technological approach for the preservation and dissemination of ICH. This study utilises a substantial corpus of open-source Chinese ICH data to develop a large language model, ICH-Qwen, for the ICH domain. The model employs natural language understanding and knowledge reasoning capabilities of large language models, augmented with synthetic data and fine-tuning techniques. The experimental results demonstrate the efficacy of ICH-Qwen in executing tasks specific to the ICH domain. It is anticipated that the model will provide intelligent solutions for the protection, inheritance and dissemination of intangible cultural heritage, as well as new theoretical and practical references for the sustainable development of intangible cultural heritage. Furthermore, it is expected that the study will open up new paths for digital humanities research.




Abstract:In the context of the rapid development of large language models, we have meticulously trained and introduced the GujiBERT and GujiGPT language models, which are foundational models specifically designed for intelligent information processing of ancient texts. These models have been trained on an extensive dataset that encompasses both simplified and traditional Chinese characters, allowing them to effectively handle various natural language processing tasks related to ancient books, including but not limited to automatic sentence segmentation, punctuation, word segmentation, part-of-speech tagging, entity recognition, and automatic translation. Notably, these models have exhibited exceptional performance across a range of validation tasks using publicly available datasets. Our research findings highlight the efficacy of employing self-supervised methods to further train the models using classical text corpora, thus enhancing their capability to tackle downstream tasks. Moreover, it is worth emphasizing that the choice of font, the scale of the corpus, and the initial model selection all exert significant influence over the ultimate experimental outcomes. To cater to the diverse text processing preferences of researchers in digital humanities and linguistics, we have developed three distinct categories comprising a total of nine model variations. We believe that by sharing these foundational language models specialized in the domain of ancient texts, we can facilitate the intelligent processing and scholarly exploration of ancient literary works and, consequently, contribute to the global dissemination of China's rich and esteemed traditional culture in this new era.