Abstract:As industrial manufacturing scales, automating fine-grained product image analysis has become critical for quality control. However, existing approaches are hindered by limited dataset coverage and poor model generalization across diverse and complex anomaly patterns. To address these challenges, we introduce MAU-Set, a comprehensive dataset for Multi-type industrial Anomaly Understanding. It spans multiple industrial domains and features a hierarchical task structure, ranging from binary classification to complex reasoning. Alongside this dataset, we establish a rigorous evaluation protocol to facilitate fair and comprehensive model assessment. Building upon this foundation, we further present MAU-GPT, a domain-adapted multimodal large model specifically designed for industrial anomaly understanding. It incorporates a novel AMoE-LoRA mechanism that unifies anomaly-aware and generalist experts adaptation, enhancing both understanding and reasoning across diverse defect classes. Extensive experiments show that MAU-GPT consistently outperforms prior state-of-the-art methods across all domains, demonstrating strong potential for scalable and automated industrial inspection.
Abstract:Chain-of-thought (CoT) prompting improves LLM reasoning but incurs high latency and memory cost due to verbose traces, motivating CoT compression with preserved correctness. Existing methods either shorten CoTs at the semantic level, which is often conservative, or prune tokens aggressively, which can miss task-critical cues and degrade accuracy. Moreover, combining the two is non-trivial due to sequential dependency, task-agnostic pruning, and distribution mismatch. We propose \textbf{CtrlCoT}, a dual-granularity CoT compression framework that harmonizes semantic abstraction and token-level pruning through three components: Hierarchical Reasoning Abstraction produces CoTs at multiple semantic granularities; Logic-Preserving Distillation trains a logic-aware pruner to retain indispensable reasoning cues (e.g., numbers and operators) across pruning ratios; and Distribution-Alignment Generation aligns compressed traces with fluent inference-time reasoning styles to avoid fragmentation. On MATH-500 with Qwen2.5-7B-Instruct, CtrlCoT uses 30.7\% fewer tokens while achieving 7.6 percentage points higher than the strongest baseline, demonstrating more efficient and reliable reasoning. Our code will be publicly available at https://github.com/fanzhenxuan/Ctrl-CoT.
Abstract:Post-training quantization (PTQ) is a widely used method to compress large language models (LLMs) without fine-tuning. It typically sets quantization hyperparameters (e.g., scaling factors) based on current-layer activations. Although this method is efficient, it suffers from quantization bias and error accumulation, resulting in suboptimal and unstable quantization, especially when the calibration data is biased. To overcome these issues, we propose Future-Aware Quantization (FAQ), which leverages future-layer activations to guide quantization. This allows better identification and preservation of important weights, while reducing sensitivity to calibration noise. We further introduce a window-wise preview mechanism to softly aggregate multiple future-layer activations, mitigating over-reliance on any single layer. To avoid expensive greedy search, we use a pre-searched configuration to minimize overhead. Experiments show that FAQ consistently outperforms prior methods with negligible extra cost, requiring no backward passes, data reconstruction, or tuning, making it well-suited for edge deployment.