Abstract:As industrial manufacturing scales, automating fine-grained product image analysis has become critical for quality control. However, existing approaches are hindered by limited dataset coverage and poor model generalization across diverse and complex anomaly patterns. To address these challenges, we introduce MAU-Set, a comprehensive dataset for Multi-type industrial Anomaly Understanding. It spans multiple industrial domains and features a hierarchical task structure, ranging from binary classification to complex reasoning. Alongside this dataset, we establish a rigorous evaluation protocol to facilitate fair and comprehensive model assessment. Building upon this foundation, we further present MAU-GPT, a domain-adapted multimodal large model specifically designed for industrial anomaly understanding. It incorporates a novel AMoE-LoRA mechanism that unifies anomaly-aware and generalist experts adaptation, enhancing both understanding and reasoning across diverse defect classes. Extensive experiments show that MAU-GPT consistently outperforms prior state-of-the-art methods across all domains, demonstrating strong potential for scalable and automated industrial inspection.