Abstract:Causal effect estimation has been widely used in marketing optimization. The framework of an uplift model followed by a constrained optimization algorithm is popular in practice. To enhance performance in the online environment, the framework needs to be improved to address the complexities caused by temporal dataset shift. This paper focuses on capturing the dataset shift from user behavior and domain distribution changing over time. We propose an Incremental Causal Effect with Proxy Knowledge Distillation (ICE-PKD) framework to tackle this challenge. The ICE-PKD framework includes two components: (i) a multi-treatment uplift network that eliminates confounding bias using counterfactual regression; (ii) an incremental training strategy that adapts to the temporal dataset shift by updating with the latest data and protects generalization via replay-based knowledge distillation. We also revisit the uplift modeling metrics and introduce a novel metric for more precise online evaluation in multiple treatment scenarios. Extensive experiments on both simulated and online datasets show that the proposed framework achieves better performance. The ICE-PKD framework has been deployed in the marketing system of Huaxiaozhu, a ride-hailing platform in China.
Abstract:Automated drug discovery offers significant potential for accelerating the development of novel therapeutics by substituting labor-intensive human workflows with machine-driven processes. However, a critical bottleneck persists in the inability of current automated frameworks to assess whether newly designed molecules infringe upon existing patents, posing significant legal and financial risks. We introduce PatentFinder, a novel tool-enhanced and multi-agent framework that accurately and comprehensively evaluates small molecules for patent infringement. It incorporates both heuristic and model-based tools tailored for decomposed subtasks, featuring: MarkushParser, which is capable of optical chemical structure recognition of molecular and Markush structures, and MarkushMatcher, which enhances large language models' ability to extract substituent groups from molecules accurately. On our benchmark dataset MolPatent-240, PatentFinder outperforms baseline approaches that rely solely on large language models, demonstrating a 13.8\% increase in F1-score and a 12\% rise in accuracy. Experimental results demonstrate that PatentFinder mitigates label bias to produce balanced predictions and autonomously generates detailed, interpretable patent infringement reports. This work not only addresses a pivotal challenge in automated drug discovery but also demonstrates the potential of decomposing complex scientific tasks into manageable subtasks for specialized, tool-augmented agents.