Abstract:Large language models (LLMs) with hundreds of billions of parameters have sparked a new wave of exciting AI applications. However, they are computationally expensive at inference time. Sparsity is a natural approach to reduce this cost, but existing methods either require costly retraining, have to forgo LLM's in-context learning ability, or do not yield wall-clock time speedup on modern hardware. We hypothesize that contextual sparsity, which are small, input-dependent sets of attention heads and MLP parameters that yield approximately the same output as the dense model for a given input, can address these issues. We show that contextual sparsity exists, that it can be accurately predicted, and that we can exploit it to speed up LLM inference in wall-clock time without compromising LLM's quality or in-context learning ability. Based on these insights, we propose DejaVu, a system that uses a low-cost algorithm to predict contextual sparsity on the fly given inputs to each layer, along with an asynchronous and hardware-aware implementation that speeds up LLM inference. We validate that DejaVu can reduce the inference latency of OPT-175B by over 2X compared to the state-of-the-art FasterTransformer, and over 6X compared to the widely used Hugging Face implementation, without compromising model quality. The code is available at https://github.com/FMInference/DejaVu.
Abstract:In the realm of deep learning, transformers have emerged as a dominant architecture, particularly in natural language processing tasks. However, with their widespread adoption, concerns regarding the security and privacy of the data processed by these models have arisen. In this paper, we address a pivotal question: Can the data fed into transformers be recovered using their attention weights and outputs? We introduce a theoretical framework to tackle this problem. Specifically, we present an algorithm that aims to recover the input data $X \in \mathbb{R}^{d \times n}$ from given attention weights $W = QK^\top \in \mathbb{R}^{d \times d}$ and output $B \in \mathbb{R}^{n \times n}$ by minimizing the loss function $L(X)$. This loss function captures the discrepancy between the expected output and the actual output of the transformer. Our findings have significant implications for the Localized Layer-wise Mechanism (LLM), suggesting potential vulnerabilities in the model's design from a security and privacy perspective. This work underscores the importance of understanding and safeguarding the internal workings of transformers to ensure the confidentiality of processed data.
Abstract:Large transformer models have achieved state-of-the-art results in numerous natural language processing tasks. Among the pivotal components of the transformer architecture, the attention mechanism plays a crucial role in capturing token interactions within sequences through the utilization of softmax function. Conversely, linear attention presents a more computationally efficient alternative by approximating the softmax operation with linear complexity. However, it exhibits substantial performance degradation when compared to the traditional softmax attention mechanism. In this paper, we bridge the gap in our theoretical understanding of the reasons behind the practical performance gap between softmax and linear attention. By conducting a comprehensive comparative analysis of these two attention mechanisms, we shed light on the underlying reasons for why softmax attention outperforms linear attention in most scenarios.
Abstract:The delta-bar-delta algorithm is recognized as a learning rate adaptation technique that enhances the convergence speed of the training process in optimization by dynamically scheduling the learning rate based on the difference between the current and previous weight updates. While this algorithm has demonstrated strong competitiveness in full data optimization when compared to other state-of-the-art algorithms like Adam and SGD, it may encounter convergence issues in mini-batch optimization scenarios due to the presence of noisy gradients. In this study, we thoroughly investigate the convergence behavior of the delta-bar-delta algorithm in real-world neural network optimization. To address any potential convergence challenges, we propose a novel approach called RDBD (Regrettable Delta-Bar-Delta). Our approach allows for prompt correction of biased learning rate adjustments and ensures the convergence of the optimization process. Furthermore, we demonstrate that RDBD can be seamlessly integrated with any optimization algorithm and significantly improve the convergence speed. By conducting extensive experiments and evaluations, we validate the effectiveness and efficiency of our proposed RDBD approach. The results showcase its capability to overcome convergence issues in mini-batch optimization and its potential to enhance the convergence speed of various optimization algorithms. This research contributes to the advancement of optimization techniques in neural network training, providing practitioners with a reliable automatic learning rate scheduler for achieving faster convergence and improved optimization outcomes.
Abstract:In the classical transformer attention scheme, we are given three $n \times d$ size matrices $Q, K, V$ (the query, key, and value tokens), and the goal is to compute a new $n \times d$ size matrix $D^{-1} \exp(QK^\top) V$ where $D = \mathrm{diag}( \exp(QK^\top) {\bf 1}_n )$. In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in $n$. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: $\bullet$ On the positive side, if all entries of the input matrices are bounded above by $o(\sqrt[3]{\log n})$ then we show how to approximate the ``tensor-type'' attention matrix in $n^{1+o(1)}$ time. $\bullet$ On the negative side, we show that if the entries of the input matrices may be as large as $\Omega(\sqrt[3]{\log n})$, then there is no algorithm that runs faster than $n^{3-o(1)}$ (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.
Abstract:In-context learning (ICL) is an astonishing emergent ability of large language models (LLMs). By presenting a prompt that includes multiple input-output pairs as examples and introducing a new query input, models can generate the corresponding output. However, the performance of models heavily relies on the quality of the input prompt when implementing in-context learning. Biased or imbalanced input prompts can significantly degrade the performance of language models. To address this issue, we introduce a reweighted algorithm called RICL (Reweighted In-context Learning). This algorithm fine-tunes language models using an unbiased validation set to determine the optimal weight for each input-output example to approximate unbiased in-context learning. Furthermore, we also introduce a low-cost reweighted algorithm, a linear optimal weight approximation algorithm called LARICL (Linear Approximation of Reweighted In-context Learning). This algorithm requires minimal training cost while providing effective results. We prove the convergence of our algorithm and validate its performance through experiments conducted on a numerical dataset. The experimental findings reveal a substantial improvement in comparison to benchmarks including the performance of casual prompt-based in-context learning and the performance of a classic fine-tuning method.
Abstract:Large language models (LLMs) have brought significant changes to human society. Softmax regression and residual neural networks (ResNet) are two important techniques in deep learning: they not only serve as significant theoretical components supporting the functionality of LLMs but also are related to many other machine learning and theoretical computer science fields, including but not limited to image classification, object detection, semantic segmentation, and tensors. Previous research works studied these two concepts separately. In this paper, we provide a theoretical analysis of the regression problem: $\| \langle \exp(Ax) + A x , {\bf 1}_n \rangle^{-1} ( \exp(Ax) + Ax ) - b \|_2^2$, where $A$ is a matrix in $\mathbb{R}^{n \times d}$, $b$ is a vector in $\mathbb{R}^n$, and ${\bf 1}_n$ is the $n$-dimensional vector whose entries are all $1$. This regression problem is a unified scheme that combines softmax regression and ResNet, which has never been done before. We derive the gradient, Hessian, and Lipschitz properties of the loss function. The Hessian is shown to be positive semidefinite, and its structure is characterized as the sum of a low-rank matrix and a diagonal matrix. This enables an efficient approximate Newton method. As a result, this unified scheme helps to connect two previously thought unrelated fields and provides novel insight into loss landscape and optimization for emerging over-parameterized neural networks, which is meaningful for future research in deep learning models.
Abstract:A rising trend in theoretical deep learning is to understand why deep learning works through Neural Tangent Kernel (NTK) [jgh18], a kernel method that is equivalent to using gradient descent to train a multi-layer infinitely-wide neural network. NTK is a major step forward in the theoretical deep learning because it allows researchers to use traditional mathematical tools to analyze properties of deep neural networks and to explain various neural network techniques from a theoretical view. A natural extension of NTK on graph learning is \textit{Graph Neural Tangent Kernel (GNTK)}, and researchers have already provide GNTK formulation for graph-level regression and show empirically that this kernel method can achieve similar accuracy as GNNs on various bioinformatics datasets [dhs+19]. The remaining question now is whether solving GNTK regression is equivalent to training an infinite-wide multi-layer GNN using gradient descent. In this paper, we provide three new theoretical results. First, we formally prove this equivalence for graph-level regression. Second, we present the first GNTK formulation for node-level regression. Finally, we prove the equivalence for node-level regression.
Abstract:Large language models (LLMs) have played a pivotal role in revolutionizing various facets of our daily existence. Solving attention regression is a fundamental task in optimizing LLMs. In this work, we focus on giving a provable guarantee for the one-layer attention network objective function $L(X,Y) = \sum_{j_0 = 1}^n \sum_{i_0 = 1}^d ( \langle \langle \exp( \mathsf{A}_{j_0} x ) , {\bf 1}_n \rangle^{-1} \exp( \mathsf{A}_{j_0} x ), A_{3} Y_{*,i_0} \rangle - b_{j_0,i_0} )^2$. Here $\mathsf{A} \in \mathbb{R}^{n^2 \times d^2}$ is Kronecker product between $A_1 \in \mathbb{R}^{n \times d}$ and $A_2 \in \mathbb{R}^{n \times d}$. $A_3$ is a matrix in $\mathbb{R}^{n \times d}$, $\mathsf{A}_{j_0} \in \mathbb{R}^{n \times d^2}$ is the $j_0$-th block of $\mathsf{A}$. The $X, Y \in \mathbb{R}^{d \times d}$ are variables we want to learn. $B \in \mathbb{R}^{n \times d}$ and $b_{j_0,i_0} \in \mathbb{R}$ is one entry at $j_0$-th row and $i_0$-th column of $B$, $Y_{*,i_0} \in \mathbb{R}^d$ is the $i_0$-column vector of $Y$, and $x \in \mathbb{R}^{d^2}$ is the vectorization of $X$. In a multi-layer LLM network, the matrix $B \in \mathbb{R}^{n \times d}$ can be viewed as the output of a layer, and $A_1= A_2 = A_3 \in \mathbb{R}^{n \times d}$ can be viewed as the input of a layer. The matrix version of $x$ can be viewed as $QK^\top$ and $Y$ can be viewed as $V$. We provide an iterative greedy algorithm to train loss function $L(X,Y)$ up $\epsilon$ that runs in $\widetilde{O}( ({\cal T}_{\mathrm{mat}}(n,n,d) + {\cal T}_{\mathrm{mat}}(n,d,d) + d^{2\omega}) \log(1/\epsilon) )$ time. Here ${\cal T}_{\mathrm{mat}}(a,b,c)$ denotes the time of multiplying $a \times b$ matrix another $b \times c$ matrix, and $\omega\approx 2.37$ denotes the exponent of matrix multiplication.
Abstract:Mahalanobis metrics are widely used in machine learning in conjunction with methods like $k$-nearest neighbors, $k$-means clustering, and $k$-medians clustering. Despite their importance, there has not been any prior work on applying sketching techniques to speed up algorithms for Mahalanobis metrics. In this paper, we initiate the study of dimension reduction for Mahalanobis metrics. In particular, we provide efficient data structures for solving the Approximate Distance Estimation (ADE) problem for Mahalanobis distances. We first provide a randomized Monte Carlo data structure. Then, we show how we can adapt it to provide our main data structure which can handle sequences of \textit{adaptive} queries and also online updates to both the Mahalanobis metric matrix and the data points, making it amenable to be used in conjunction with prior algorithms for online learning of Mahalanobis metrics.