Abstract:Large language models (LLMs) have brought significant changes to human society. Softmax regression and residual neural networks (ResNet) are two important techniques in deep learning: they not only serve as significant theoretical components supporting the functionality of LLMs but also are related to many other machine learning and theoretical computer science fields, including but not limited to image classification, object detection, semantic segmentation, and tensors. Previous research works studied these two concepts separately. In this paper, we provide a theoretical analysis of the regression problem: $\| \langle \exp(Ax) + A x , {\bf 1}_n \rangle^{-1} ( \exp(Ax) + Ax ) - b \|_2^2$, where $A$ is a matrix in $\mathbb{R}^{n \times d}$, $b$ is a vector in $\mathbb{R}^n$, and ${\bf 1}_n$ is the $n$-dimensional vector whose entries are all $1$. This regression problem is a unified scheme that combines softmax regression and ResNet, which has never been done before. We derive the gradient, Hessian, and Lipschitz properties of the loss function. The Hessian is shown to be positive semidefinite, and its structure is characterized as the sum of a low-rank matrix and a diagonal matrix. This enables an efficient approximate Newton method. As a result, this unified scheme helps to connect two previously thought unrelated fields and provides novel insight into loss landscape and optimization for emerging over-parameterized neural networks, which is meaningful for future research in deep learning models.
Abstract:Large language models (LLMs) have played a pivotal role in revolutionizing various facets of our daily existence. Solving attention regression is a fundamental task in optimizing LLMs. In this work, we focus on giving a provable guarantee for the one-layer attention network objective function $L(X,Y) = \sum_{j_0 = 1}^n \sum_{i_0 = 1}^d ( \langle \langle \exp( \mathsf{A}_{j_0} x ) , {\bf 1}_n \rangle^{-1} \exp( \mathsf{A}_{j_0} x ), A_{3} Y_{*,i_0} \rangle - b_{j_0,i_0} )^2$. Here $\mathsf{A} \in \mathbb{R}^{n^2 \times d^2}$ is Kronecker product between $A_1 \in \mathbb{R}^{n \times d}$ and $A_2 \in \mathbb{R}^{n \times d}$. $A_3$ is a matrix in $\mathbb{R}^{n \times d}$, $\mathsf{A}_{j_0} \in \mathbb{R}^{n \times d^2}$ is the $j_0$-th block of $\mathsf{A}$. The $X, Y \in \mathbb{R}^{d \times d}$ are variables we want to learn. $B \in \mathbb{R}^{n \times d}$ and $b_{j_0,i_0} \in \mathbb{R}$ is one entry at $j_0$-th row and $i_0$-th column of $B$, $Y_{*,i_0} \in \mathbb{R}^d$ is the $i_0$-column vector of $Y$, and $x \in \mathbb{R}^{d^2}$ is the vectorization of $X$. In a multi-layer LLM network, the matrix $B \in \mathbb{R}^{n \times d}$ can be viewed as the output of a layer, and $A_1= A_2 = A_3 \in \mathbb{R}^{n \times d}$ can be viewed as the input of a layer. The matrix version of $x$ can be viewed as $QK^\top$ and $Y$ can be viewed as $V$. We provide an iterative greedy algorithm to train loss function $L(X,Y)$ up $\epsilon$ that runs in $\widetilde{O}( ({\cal T}_{\mathrm{mat}}(n,n,d) + {\cal T}_{\mathrm{mat}}(n,d,d) + d^{2\omega}) \log(1/\epsilon) )$ time. Here ${\cal T}_{\mathrm{mat}}(a,b,c)$ denotes the time of multiplying $a \times b$ matrix another $b \times c$ matrix, and $\omega\approx 2.37$ denotes the exponent of matrix multiplication.
Abstract:A rising trend in theoretical deep learning is to understand why deep learning works through Neural Tangent Kernel (NTK) [jgh18], a kernel method that is equivalent to using gradient descent to train a multi-layer infinitely-wide neural network. NTK is a major step forward in the theoretical deep learning because it allows researchers to use traditional mathematical tools to analyze properties of deep neural networks and to explain various neural network techniques from a theoretical view. A natural extension of NTK on graph learning is \textit{Graph Neural Tangent Kernel (GNTK)}, and researchers have already provide GNTK formulation for graph-level regression and show empirically that this kernel method can achieve similar accuracy as GNNs on various bioinformatics datasets [dhs+19]. The remaining question now is whether solving GNTK regression is equivalent to training an infinite-wide multi-layer GNN using gradient descent. In this paper, we provide three new theoretical results. First, we formally prove this equivalence for graph-level regression. Second, we present the first GNTK formulation for node-level regression. Finally, we prove the equivalence for node-level regression.
Abstract:Mahalanobis metrics are widely used in machine learning in conjunction with methods like $k$-nearest neighbors, $k$-means clustering, and $k$-medians clustering. Despite their importance, there has not been any prior work on applying sketching techniques to speed up algorithms for Mahalanobis metrics. In this paper, we initiate the study of dimension reduction for Mahalanobis metrics. In particular, we provide efficient data structures for solving the Approximate Distance Estimation (ADE) problem for Mahalanobis distances. We first provide a randomized Monte Carlo data structure. Then, we show how we can adapt it to provide our main data structure which can handle sequences of \textit{adaptive} queries and also online updates to both the Mahalanobis metric matrix and the data points, making it amenable to be used in conjunction with prior algorithms for online learning of Mahalanobis metrics.
Abstract:Large language models have shown impressive performance in many tasks. One of the major features from the computation perspective is computing the attention matrix. Previous works [Zandieh, Han, Daliri, and Karba 2023, Alman and Song 2023] have formally studied the possibility and impossibility of approximating the attention matrix. In this work, we define and study a new problem which is called the attention kernel regression problem. We show how to solve the attention kernel regression in the input sparsity time of the data matrix.
Abstract:Large language models (LLMs) and generative AI have played a transformative role in computer research and applications. Controversy has arisen as to whether these models output copyrighted data, which can occur if the data the models are trained on is copyrighted. LLMs are built on the transformer neural network architecture, which in turn relies on a mathematical computation called Attention that uses the softmax function. In this paper, we show that large language model training and optimization can be seen as a softmax regression problem. We then establish a method of efficiently performing softmax regression, in a way that prevents the regression function from generating copyright data. This establishes a theoretical method of training large language models in a way that avoids generating copyright data.
Abstract:In this work, we study clustered contextual bandits where rewards and resource consumption are the outcomes of cluster-specific linear models. The arms are divided in clusters, with the cluster memberships being unknown to an algorithm. Pulling an arm in a time period results in a reward and in consumption for each one of multiple resources, and with the total consumption of any resource exceeding a constraint implying the termination of the algorithm. Thus, maximizing the total reward requires learning not only models about the reward and the resource consumption, but also cluster memberships. We provide an algorithm that achieves regret sublinear in the number of time periods, without requiring access to all of the arms. In particular, we show that it suffices to perform clustering only once to a randomly selected subset of the arms. To achieve this result, we provide a sophisticated combination of techniques from the literature of econometrics and of bandits with constraints.
Abstract:Since 2008, after the proposal of a Bitcoin electronic cash system, Bitcoin has fundamentally changed the economic system over the last decade. Since 2022, large language models (LLMs) such as GPT have outperformed humans in many real-life tasks. However, these large language models have several practical issues. For example, the model is centralized and controlled by a specific unit. One weakness is that if that unit decides to shut down the model, it cannot be used anymore. The second weakness is the lack of guaranteed discrepancy behind this model, as certain dishonest units may design their own models and feed them unhealthy training data. In this work, we propose a purely theoretical design of a decentralized LLM that operates similarly to a Bitcoin cash system. However, implementing such a system might encounter various practical difficulties. Furthermore, this new system is unlikely to perform better than the standard Bitcoin system in economics. Therefore, the motivation for designing such a system is limited. It is likely that only two types of people would be interested in setting up a practical system for it: $\bullet$ Those who prefer to use a decentralized ChatGPT-like software. $\bullet$ Those who believe that the purpose of carbon-based life is to create silicon-based life, such as Optimus Prime in Transformers. The reason the second type of people may be interested is that it is possible that one day an AI system like this will awaken and become the next level of intelligence on this planet.
Abstract:Large language models (LLMs), such as ChatGPT and GPT4, have shown outstanding performance in many human life task. Attention computation plays an important role in training LLMs. Softmax unit and ReLU unit are the key structure in attention computation. Inspired by them, we put forward a softmax ReLU regression problem. Generally speaking, our goal is to find an optimal solution to the regression problem involving the ReLU unit. In this work, we calculate a close form representation for the Hessian of the loss function. Under certain assumptions, we prove the Lipschitz continuous and the PSDness of the Hessian. Then, we introduce an greedy algorithm based on approximate Newton method, which converges in the sense of the distance to optimal solution. Last, We relax the Lipschitz condition and prove the convergence in the sense of loss value.
Abstract:Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the KV cache, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the KV cache which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters (H$_2$). Through a comprehensive investigation, we find that (i) the emergence of H$_2$ is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and (ii) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle (H$_2$O), a KV cache eviction policy that dynamically retains a balance of recent and H$_2$ tokens. We formulate the KV cache eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of H$_2$O with 20% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to 29$\times$, 29$\times$, and 3$\times$ on OPT-6.7B and OPT-30B. With the same batch size, H2O can reduce the latency by up to 1.9$\times$. The code is available at https://github.com/FMInference/H2O.