Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Lianke Qin, Saayan Mitra, Zhao Song, Yuanyuan Yang, Tianyi Zhou

In this paper, we consider a heavy inner product identification problem, which generalizes the Light Bulb problem~(\cite{prr89}): Given two sets $A \subset \{-1,+1\}^d$ and $B \subset \{-1,+1\}^d$ with $|A|=|B| = n$, if there are exact $k$ pairs whose inner product passes a certain threshold, i.e., $\{(a_1, b_1), \cdots, (a_k, b_k)\} \subset A \times B$ such that $\forall i \in [k], \langle a_i,b_i \rangle \geq \rho \cdot d$, for a threshold $\rho \in (0,1)$, the goal is to identify those $k$ heavy inner products. We provide an algorithm that runs in $O(n^{2 \omega / 3+ o(1)})$ time to find the $k$ inner product pairs that surpass $\rho \cdot d$ threshold with high probability, where $\omega$ is the current matrix multiplication exponent. By solving this problem, our method speed up the training of neural networks with ReLU activation function.

Via

Avrim Blum, Meghal Gupta, Gene Li, Naren Sarayu Manoj, Aadirupa Saha, Yuanyuan Yang

We introduce and study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer $\mathbf{x}^{*}$ for a function $f\colon X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^d$. In each round, the algorithm submits a pair of guesses, i.e., $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worse of the two guesses; i.e., ${\max} \left( f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}) \right) - f(\mathbf{x}^{*})$. The goal is to minimize the number of iterations required to find an $\varepsilon$-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function $f$ and set $X$ that incurs cost $O(d)$ and iteration complexity $O(d\log(1/\varepsilon)^2)$. Moreover, our dependence on $d$ is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur $\Omega(d)$ cost and iteration complexity.

Via

Yanjie Li, Bin Xie, Songtao Guo, Yuanyuan Yang, Bin Xiao

Benefiting from the rapid development of deep learning, 2D and 3D computer vision applications are deployed in many safe-critical systems, such as autopilot and identity authentication. However, deep learning models are not trustworthy enough because of their limited robustness against adversarial attacks. The physically realizable adversarial attacks further pose fatal threats to the application and human safety. Lots of papers have emerged to investigate the robustness and safety of deep learning models against adversarial attacks. To lead to trustworthy AI, we first construct a general threat model from different perspectives and then comprehensively review the latest progress of both 2D and 3D adversarial attacks. We extend the concept of adversarial examples beyond imperceptive perturbations and collate over 170 papers to give an overview of deep learning model robustness against various adversarial attacks. To the best of our knowledge, we are the first to systematically investigate adversarial attacks for 3D models, a flourishing field applied to many real-world applications. In addition, we examine physical adversarial attacks that lead to safety violations. Last but not least, we summarize present popular topics, give insights on challenges, and shed light on future research on trustworthy AI.

Via

Yuanyuan Yang, Claire Birnie, Tariq Alkhalifah

Microseismic event detection and location are two primary components in microseismic monitoring, which offers us invaluable insights into the subsurface during reservoir stimulation and evolution. Conventional approaches for event detection and location often suffer from manual intervention and/or heavy computation, while current machine learning-assisted approaches typically address detection and location separately; such limitations hinder the potential for real-time microseismic monitoring. We propose an approach to unify event detection and source location into a single framework by adapting a Convolutional Neural Network backbone and an encoder-decoder Transformer with a set-based Hungarian loss, which is applied directly to recorded waveforms. The proposed network is trained on synthetic data simulating multiple microseismic events corresponding to random source locations in the area of suspected microseismic activities. A synthetic test on a 2D profile of the SEAM Time Lapse model illustrates the capability of the proposed method in detecting the events properly and locating them in the subsurface accurately; while, a field test using the Arkoma Basin data further proves its practicability, efficiency, and its potential in paving the way for real-time monitoring of microseismic events.

Via

Lianke Qin, Zhao Song, Yuanyuan Yang

Deep learning has been widely used in many fields, but the model training process usually consumes massive computational resources and time. Therefore, designing an efficient neural network training method with a provable convergence guarantee is a fundamental and important research question. In this paper, we present a static half-space report data structure that consists of a fully connected two-layer neural network for shifted ReLU activation to enable activated neuron identification in sublinear time via geometric search. We also prove that our algorithm can converge in $O(M^2/\epsilon^2)$ time with network size quadratic in the coefficient norm upper bound $M$ and error term $\epsilon$.

Via

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen, Tianming Liu, Bao Ge

This paper presents a comprehensive survey of ChatGPT and GPT-4, state-of-the-art large language models (LLM) from the GPT series, and their prospective applications across diverse domains. Indeed, key innovations such as large-scale pre-training that captures knowledge across the entire world wide web, instruction fine-tuning and Reinforcement Learning from Human Feedback (RLHF) have played significant roles in enhancing LLMs' adaptability and performance. We performed an in-depth analysis of 194 relevant papers on arXiv, encompassing trend analysis, word cloud representation, and distribution analysis across various application domains. The findings reveal a significant and increasing interest in ChatGPT/GPT-4 research, predominantly centered on direct natural language processing applications, while also demonstrating considerable potential in areas ranging from education and history to mathematics, medicine, and physics. This study endeavors to furnish insights into ChatGPT's capabilities, potential implications, ethical concerns, and offer direction for future advancements in this field.

Via

Yuanyuan Yang, Bowen Xu, Yinjie Li, Sören Schwertfeger

Benchmarking Simultaneous Localization and Mapping (SLAM) algorithms is important to scientists and users of robotic systems alike. But through their many configuration options in hardware and software, SLAM systems feature a vast parameter space that scientists up to now were not able to explore. The proposed SLAM Hive Benchmarking Suite is able to analyze SLAM algorithms in 1000's of mapping runs, through its utilization of container technology and deployment in a cluster. This paper presents the architecture and open source implementation of SLAM Hive and compares it to existing efforts on SLAM evaluation. Furthermore, we highlight the function of SLAM Hive by exploring some open source algorithms on public datasets in terms of accuracy. We compare the algorithms against each other and evaluate how parameters effect not only accuracy but also CPU and memory usage. Through this we show that SLAM Hive can become an essential tool for proper comparisons and evaluations of SLAM algorithms and thus drive the scientific development in the research on SLAM.

Via

Yuanyuan Yang, Delin Feng, Sören Schwertfeger

This paper presents a very compact 16-node cluster that is the core of a future robot for collecting and storing massive amounts of sensor data for research on Simultaneous Localization and Mapping (SLAM). To the best of our knowledge, this is the first time that such a cluster is used in robotics. We first present the requirements and different options for computing of such a robot and then show the hardware and software of our solution in detail. The cluster consists of 16 nodes of AMD Ryzen 7 5700U CPUs with a total of 128 cores. As a system that is to be used on a Clearpath Husky robot, it is very small in size, can be operated from battery power and has all required power and networking components integrated. Stress tests on the completed cluster show that it performs well.

Via

Yuling Jiao, Dingwei Li, Min Liu, Xiangliang Lu, Yuanyuan Yang

In this paper, we consider recovering $n$ dimensional signals from $m$ binary measurements corrupted by noises and sign flips under the assumption that the target signals have low generative intrinsic dimension, i.e., the target signals can be approximately generated via an $L$-Lipschitz generator $G: \mathbb{R}^k\rightarrow\mathbb{R}^{n}, k\ll n$. Although the binary measurements model is highly nonlinear, we propose a least square decoder and prove that, up to a constant $c$, with high probability, the least square decoder achieves a sharp estimation error $\mathcal{O} (\sqrt{\frac{k\log (Ln)}{m}})$ as long as $m\geq \mathcal{O}( k\log (Ln))$. Extensive numerical simulations and comparisons with state-of-the-art methods demonstrated the least square decoder is robust to noise and sign flips, as indicated by our theory. By constructing a ReLU network with properly chosen depth and width, we verify the (approximately) deep generative prior, which is of independent interest.

Via