Abstract:We introduce STORY2GAME, a novel approach to using Large Language Models to generate text-based interactive fiction games that starts by generating a story, populates the world, and builds the code for actions in a game engine that enables the story to play out interactively. Whereas a given set of hard-coded actions can artificially constrain story generation, the ability to generate actions means the story generation process can be more open-ended but still allow for experiences that are grounded in a game state. The key to successful action generation is to use LLM-generated preconditions and effects of actions in the stories as guides for what aspects of the game state must be tracked and changed by the game engine when a player performs an action. We also introduce a technique for dynamically generating new actions to accommodate the player's desire to perform actions that they think of that are not part of the story. Dynamic action generation may require on-the-fly updates to the game engine's state representation and revision of previously generated actions. We evaluate the success rate of action code generation with respect to whether a player can interactively play through the entire generated story.
Abstract:This paper explores the potential of a small, domain-specific language model trained exclusively on sports-related data. We investigate whether extensive training data with specially designed small model structures can overcome model size constraints. The study introduces the OnlySports collection, comprising OnlySportsLM, OnlySports Dataset, and OnlySports Benchmark. Our approach involves: 1) creating a massive 600 billion tokens OnlySports Dataset from FineWeb, 2) optimizing the RWKV architecture for sports-related tasks, resulting in a 196M parameters model with 20-layer, 640-dimension structure, 3) training the OnlySportsLM on part of OnlySports Dataset, and 4) testing the resultant model on OnlySports Benchmark. OnlySportsLM achieves a 37.62%/34.08% accuracy improvement over previous 135M/360M state-of-the-art models and matches the performance of larger models such as SomlLM 1.7B and Qwen 1.5B in the sports domain. Additionally, the OnlySports collection presents a comprehensive workflow for building high-quality, domain-specific language models, providing a replicable blueprint for efficient AI development across various specialized fields.
Abstract:Imaginative play is an area of creativity that could allow robots to engage with the world around them in a much more personified way. Imaginary play can be seen as taking real objects and locations and using them as imaginary objects and locations in virtual scenarios. We adopted the story generation capability of large language models (LLMs) to obtain the stories used for imaginary play with human-written prompts. Those generated stories will be simplified and mapped into action sequences that can guide the agent in imaginary play. To evaluate whether the agent can successfully finish the imaginary play, we also designed a text adventure game to simulate a house as the playground for the agent to interact.
Abstract:Adenosine triphosphate (ATP) is a high-energy phosphate compound and the most direct energy source in organisms. ATP is an essential biomarker for evaluating cell viability in biology. Researchers often use ATP bioluminescence to measure the ATP of organoid after drug to evaluate the drug efficacy. However, ATP bioluminescence has some limitations, leading to unreliable drug screening results. Performing ATP bioluminescence causes cell lysis of organoids, so it is impossible to observe organoids' long-term viability changes after medication continually. To overcome the disadvantages of ATP bioluminescence, we propose Ins-ATP, a non-invasive strategy, the first organoid ATP estimation model based on the high-throughput microscopic image. Ins-ATP directly estimates the ATP of organoids from high-throughput microscopic images, so that it does not influence the drug reactions of organoids. Therefore, the ATP change of organoids can be observed for a long time to obtain more stable results. Experimental results show that the ATP estimation by Ins-ATP is in good agreement with those determined by ATP bioluminescence. Specifically, the predictions of Ins-ATP are consistent with the results measured by ATP bioluminescence in the efficacy evaluation experiments of different drugs.