Abstract:We introduce STORY2GAME, a novel approach to using Large Language Models to generate text-based interactive fiction games that starts by generating a story, populates the world, and builds the code for actions in a game engine that enables the story to play out interactively. Whereas a given set of hard-coded actions can artificially constrain story generation, the ability to generate actions means the story generation process can be more open-ended but still allow for experiences that are grounded in a game state. The key to successful action generation is to use LLM-generated preconditions and effects of actions in the stories as guides for what aspects of the game state must be tracked and changed by the game engine when a player performs an action. We also introduce a technique for dynamically generating new actions to accommodate the player's desire to perform actions that they think of that are not part of the story. Dynamic action generation may require on-the-fly updates to the game engine's state representation and revision of previously generated actions. We evaluate the success rate of action code generation with respect to whether a player can interactively play through the entire generated story.
Abstract:Interactive fiction games have emerged as an important application to improve the generalization capabilities of language-based reinforcement learning (RL) agents. Existing environments for interactive fiction games are domain-specific or time-consuming to generate and do not train the RL agents to master a specific set of skills. In this work, we introduce an interactive environment for self-supervised RL, STARLING, for text-based games that bootstraps the text-based RL agents with automatically generated games (based on the seed set of game ideas) to boost the performance and generalization capabilities to reach a goal of the target environment. These games let the agent hone their skills on a predefined set of tasks. We create and test an environment with 100 games, generated using this automated framework that uses large language models (GPT-3) and an interactive fiction game engine (based on Inform7) to provide the user with the ability to generate more games under minimal human supervision. Experimental results based on both the human participants and baseline text-based RL agents reveal that current state-of-the-art text-based RL agents cannot use previously learned skills in new situations at the level humans can. These results enforce STARLING's potential to serve as a sandbox environment for further research in self-supervised text-based RL.