Abstract:Surgical segmentation is pivotal for scene understanding yet remains hindered by annotation scarcity and semantic inconsistency across diverse procedures. Existing approaches typically fine-tune natural foundation models (e.g., SAM) with limited supervision, functioning merely as domain adapters rather than surgical foundation models. Consequently, they struggle to generalize across the vast variability of surgical targets. To bridge this gap, we present LapFM, a foundation model designed to evolve robust segmentation capabilities from massive unlabeled surgical images. Distinct from medical foundation models relying on inefficient self-supervised proxy tasks, LapFM leverages a Hierarchical Concept Evolving Pre-training paradigm. First, we establish a Laparoscopic Concept Hierarchy (LCH) via a hierarchical mask decoder with parent-child query embeddings, unifying diverse entities (i.e., Anatomy, Tissue, and Instrument) into a scalable knowledge structure with cross-granularity semantic consistency. Second, we propose a Confidence-driven Evolving Labeling that iteratively generates and filters pseudo-labels based on hierarchical consistency, progressively incorporating reliable samples from unlabeled images into training. This process yields LapBench-114K, a large-scale benchmark comprising 114K image-mask pairs. Extensive experiments demonstrate that LapFM significantly outperforms state-of-the-art methods, establishing new standards for granularity-adaptive generalization in universal laparoscopic segmentation. The source code is available at https://github.com/xq141839/LapFM.
Abstract:To assist surgeons in the operating theatre, surgical phase recognition is critical for developing computer-assisted surgical systems, which requires comprehensive understanding of surgical videos. Although existing studies made great progress, there are still two significant limitations worthy of improvement. First, due to the compromise of resource consumption, frame-wise visual features are extracted by 2D networks and disregard spatial and temporal knowledge of surgical actions, which hinders subsequent inter-frame modeling for phase prediction. Second, these works simply utilize ordinary classification loss with one-hot phase labels to optimize the phase predictions, and cannot fully explore surgical videos under inadequate supervision. To overcome these two limitations, we propose a Surgical Temporal Action-aware Network with sequence Regularization, named STAR-Net, to recognize surgical phases more accurately from input videos. Specifically, we propose an efficient multi-scale surgical temporal action (MS-STA) module, which integrates visual features with spatial and temporal knowledge of surgical actions at the cost of 2D networks. Moreover, we devise the dual-classifier sequence regularization (DSR) to facilitate the training of STAR-Net by the sequence guidance of an auxiliary classifier with a smaller capacity. Our STAR-Net with MS-STA and DSR can exploit visual features of surgical actions with effective regularization, thereby leading to the superior performance of surgical phase recognition. Extensive experiments on a large-scale gastrectomy surgery dataset and the public Cholec80 benchmark prove that our STAR-Net significantly outperforms state-of-the-arts of surgical phase recognition.