Abstract:The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without requiring additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (a fork phase), and then merges the resulting hidden states for joint reasoning in the remaining layers (a merge phase). This approach promotes balanced modality contributions and leverages complementary information across modalities. We evaluate our method on two representative AV-LLMs, VideoLLaMA2 and video-SALMONN, using three benchmark datasets. Experimental results demonstrate consistent performance improvements on tasks focused on audio, video, and combined audio-visual reasoning, demonstrating the effectiveness of inference-time interventions for robust multimodal understanding.
Abstract:Hallucination remains a major challenge in multimodal large language models (MLLMs). To address this, various contrastive decoding (CD) methods have been proposed that contrasts original logits with hallucinated logits generated from perturbed inputs. While CD has shown promise in vision-language models (VLMs), it is not well-suited for AV-LLMs, where hallucinations often emerge from both unimodal and cross-modal combinations involving audio, video, and language. These intricate interactions call for a more adaptive and modality-aware decoding strategy. In this paper, we propose Audio-Visual Contrastive Decoding (AVCD)-a novel, training-free decoding framework designed to model trimodal interactions and suppress modality-induced hallucinations in AV-LLMs. Unlike previous CD methods in VLMs that corrupt a fixed modality, AVCD leverages attention distributions to dynamically identify less dominant modalities and applies attentive masking to generate perturbed output logits. To support CD in a trimodal setting, we also reformulate the original CD framework to jointly handle audio, visual, and textual inputs. Finally, to improve efficiency, we introduce entropy-guided adaptive decoding, which selectively skips unnecessary decoding steps based on the model's confidence in its predictions. Extensive experiments demonstrate that AVCD consistently outperforms existing decoding methods. Especially, on the AVHBench dataset, it improves accuracy by 6% for VideoLLaMA2 and 11% for video-SALMONN, demonstrating strong robustness and generalizability.
Abstract:The goal of this paper is to enhance face recognition performance by augmenting head poses during the testing phase. Existing methods often rely on training on frontalised images or learning pose-invariant representations, yet both approaches typically require re-training and testing for each dataset, involving a substantial amount of effort. In contrast, this study proposes Pose-TTA, a novel approach that aligns faces at inference time without additional training. To achieve this, we employ a portrait animator that transfers the source image identity into the pose of a driving image. Instead of frontalising a side-profile face -- which can introduce distortion -- Pose-TTA generates matching side-profile images for comparison, thereby reducing identity information loss. Furthermore, we propose a weighted feature aggregation strategy to address any distortions or biases arising from the synthetic data, thus enhancing the reliability of the augmented images. Extensive experiments on diverse datasets and with various pre-trained face recognition models demonstrate that Pose-TTA consistently improves inference performance. Moreover, our method is straightforward to integrate into existing face recognition pipelines, as it requires no retraining or fine-tuning of the underlying recognition models.
Abstract:The objective of this work is to align asynchronous subtitles in sign language videos with limited labelled data. To achieve this goal, we propose a novel framework with the following contributions: (1) we leverage fundamental grammatical rules of British Sign Language (BSL) to pre-process the input subtitles, (2) we design a selective alignment loss to optimise the model for predicting the temporal location of signs only when the queried sign actually occurs in a scene, and (3) we conduct self-training with refined pseudo-labels which are more accurate than the heuristic audio-aligned labels. From this, our model not only better understands the correlation between the text and the signs, but also holds potential for application in the translation of sign languages, particularly in scenarios where manual labelling of large-scale sign data is impractical or challenging. Extensive experimental results demonstrate that our approach achieves state-of-the-art results, surpassing previous baselines by substantial margins in terms of both frame-level accuracy and F1-score. This highlights the effectiveness and practicality of our framework in advancing the field of sign language video alignment and translation.
Abstract:Our objective is to translate continuous sign language into spoken language text. Inspired by the way human interpreters rely on context for accurate translation, we incorporate additional contextual cues together with the signing video, into a new translation framework. Specifically, besides visual sign recognition features that encode the input video, we integrate complementary textual information from (i) captions describing the background show, (ii) translation of previous sentences, as well as (iii) pseudo-glosses transcribing the signing. These are automatically extracted and inputted along with the visual features to a pre-trained large language model (LLM), which we fine-tune to generate spoken language translations in text form. Through extensive ablation studies, we show the positive contribution of each input cue to the translation performance. We train and evaluate our approach on BOBSL -- the largest British Sign Language dataset currently available. We show that our contextual approach significantly enhances the quality of the translations compared to previously reported results on BOBSL, and also to state-of-the-art methods that we implement as baselines. Furthermore, we demonstrate the generality of our approach by applying it also to How2Sign, an American Sign Language dataset, and achieve competitive results.
Abstract:We present VoiceDiT, a multi-modal generative model for producing environment-aware speech and audio from text and visual prompts. While aligning speech with text is crucial for intelligible speech, achieving this alignment in noisy conditions remains a significant and underexplored challenge in the field. To address this, we present a novel audio generation pipeline named VoiceDiT. This pipeline includes three key components: (1) the creation of a large-scale synthetic speech dataset for pre-training and a refined real-world speech dataset for fine-tuning, (2) the Dual-DiT, a model designed to efficiently preserve aligned speech information while accurately reflecting environmental conditions, and (3) a diffusion-based Image-to-Audio Translator that allows the model to bridge the gap between audio and image, facilitating the generation of environmental sound that aligns with the multi-modal prompts. Extensive experimental results demonstrate that VoiceDiT outperforms previous models on real-world datasets, showcasing significant improvements in both audio quality and modality integration.
Abstract:Video Temporal Grounding (VTG) aims to identify visual frames in a video clip that match text queries. Recent studies in VTG employ cross-attention to correlate visual frames and text queries as individual token sequences. However, these approaches overlook a crucial aspect of the problem: a holistic understanding of the query sentence. A model may capture correlations between individual word tokens and arbitrary visual frames while possibly missing out on the global meaning. To address this, we introduce two primary contributions: (1) a visual frame-level gate mechanism that incorporates holistic textual information, (2) cross-modal alignment loss to learn the fine-grained correlation between query and relevant frames. As a result, we regularize the effect of individual word tokens and suppress irrelevant visual frames. We demonstrate that our method outperforms state-of-the-art approaches in VTG benchmarks, indicating that holistic text understanding guides the model to focus on the semantically important parts within the video.
Abstract:The goal of this work is to simultaneously generate natural talking faces and speech outputs from text. We achieve this by integrating Talking Face Generation (TFG) and Text-to-Speech (TTS) systems into a unified framework. We address the main challenges of each task: (1) generating a range of head poses representative of real-world scenarios, and (2) ensuring voice consistency despite variations in facial motion for the same identity. To tackle these issues, we introduce a motion sampler based on conditional flow matching, which is capable of high-quality motion code generation in an efficient way. Moreover, we introduce a novel conditioning method for the TTS system, which utilises motion-removed features from the TFG model to yield uniform speech outputs. Our extensive experiments demonstrate that our method effectively creates natural-looking talking faces and speech that accurately match the input text. To our knowledge, this is the first effort to build a multimodal synthesis system that can generalise to unseen identities.
Abstract:The goal of this paper is to generate realistic audio with a lightweight and fast diffusion-based vocoder, named FreGrad. Our framework consists of the following three key components: (1) We employ discrete wavelet transform that decomposes a complicated waveform into sub-band wavelets, which helps FreGrad to operate on a simple and concise feature space, (2) We design a frequency-aware dilated convolution that elevates frequency awareness, resulting in generating speech with accurate frequency information, and (3) We introduce a bag of tricks that boosts the generation quality of the proposed model. In our experiments, FreGrad achieves 3.7 times faster training time and 2.2 times faster inference speed compared to our baseline while reducing the model size by 0.6 times (only 1.78M parameters) without sacrificing the output quality. Audio samples are available at: https://mm.kaist.ac.kr/projects/FreGrad.
Abstract:The objective of this work is to extract target speaker's voice from a mixture of voices using visual cues. Existing works on audio-visual speech separation have demonstrated their performance with promising intelligibility, but maintaining naturalness remains a challenge. To address this issue, we propose AVDiffuSS, an audio-visual speech separation model based on a diffusion mechanism known for its capability in generating natural samples. For an effective fusion of the two modalities for diffusion, we also propose a cross-attention-based feature fusion mechanism. This mechanism is specifically tailored for the speech domain to integrate the phonetic information from audio-visual correspondence in speech generation. In this way, the fusion process maintains the high temporal resolution of the features, without excessive computational requirements. We demonstrate that the proposed framework achieves state-of-the-art results on two benchmarks, including VoxCeleb2 and LRS3, producing speech with notably better naturalness.