Abstract:Automated Audio Captioning aims to describe the semantic content of input audio. Recent works have employed large language models (LLMs) as a text decoder to leverage their reasoning capabilities. However, prior approaches that project audio features into the LLM embedding space without considering cross-modal alignment fail to fully utilize these capabilities. To address this, we propose LAMB, an LLM-based audio captioning framework that bridges the modality gap between audio embeddings and the LLM text embedding space. LAMB incorporates a Cross-Modal Aligner that minimizes Cauchy-Schwarz divergence while maximizing mutual information, yielding tighter alignment between audio and text at both global and token levels. We further design a Two-Stream Adapter that extracts semantically enriched audio embeddings, thereby delivering richer information to the Cross-Modal Aligner. Finally, leveraging the aligned audio embeddings, a proposed Token Guide directly computes scores within the LLM text embedding space to steer the output logits of generated captions. Experimental results confirm that our framework strengthens the reasoning capabilities of the LLM decoder, achieving state-of-the-art performance on AudioCaps.
Abstract:The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without requiring additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (a fork phase), and then merges the resulting hidden states for joint reasoning in the remaining layers (a merge phase). This approach promotes balanced modality contributions and leverages complementary information across modalities. We evaluate our method on two representative AV-LLMs, VideoLLaMA2 and video-SALMONN, using three benchmark datasets. Experimental results demonstrate consistent performance improvements on tasks focused on audio, video, and combined audio-visual reasoning, demonstrating the effectiveness of inference-time interventions for robust multimodal understanding.