Abstract:Adapting large language models to other languages typically employs supervised fine-tuning (SFT) as a standard approach. However, it often suffers from an overemphasis on English performance, a phenomenon that is especially pronounced in data-constrained environments. To overcome these challenges, we propose \textbf{Cross-Lingual Optimization (CLO)} that efficiently transfers an English-centric LLM to a target language while preserving its English capabilities. CLO utilizes publicly available English SFT data and a translation model to enable cross-lingual transfer. We conduct experiments using five models on six languages, each possessing varying levels of resource. Our results show that CLO consistently outperforms SFT in both acquiring target language proficiency and maintaining English performance. Remarkably, in low-resource languages, CLO with only 3,200 samples surpasses SFT with 6,400 samples, demonstrating that CLO can achieve better performance with less data. Furthermore, we find that SFT is particularly sensitive to data quantity in medium and low-resource languages, whereas CLO remains robust. Our comprehensive analysis emphasizes the limitations of SFT and incorporates additional training strategies in CLO to enhance efficiency.
Abstract:Large Language Models (LLMs) increasingly incorporate multilingual capabilities, fueling the demand to transfer them into target language-specific models. However, most approaches, which blend the source model's embedding by replacing the source vocabulary with the target language-specific vocabulary, may constrain expressive capacity in the target language since the source model is predominantly trained on English data. In this paper, we propose Semantic Aware Linear Transfer (SALT), a novel cross-lingual transfer technique that recycles embeddings from target language Pre-trained Language Models (PLMs) to transmit the deep representational strengths of PLM-derived embedding to LLMs. SALT derives unique regression lines based on the similarity in the overlap of the source and target vocabularies, to handle each non-overlapping token's embedding space. Our extensive experiments show that SALT significantly outperforms other transfer methods and achieves lower loss with accelerating faster convergence during language adaptation. Notably, SALT obtains remarkable performance in cross-lingual understanding setups compared to other methods. Furthermore, we highlight the scalable use of PLMs to enhance the functionality of contemporary LLMs by conducting experiments with varying architectures.
Abstract:Translating major language resources to build minor language resources becomes a widely-used approach. Particularly in translating complex data points composed of multiple components, it is common to translate each component separately. However, we argue that this practice often overlooks the interrelation between components within the same data point. To address this limitation, we propose a novel MT pipeline that considers the intra-data relation in implementing MT for training data. In our MT pipeline, all the components in a data point are concatenated to form a single translation sequence and subsequently reconstructed to the data components after translation. We introduce a Catalyst Statement (CS) to enhance the intra-data relation, and Indicator Token (IT) to assist the decomposition of a translated sequence into its respective data components. Through our approach, we have achieved a considerable improvement in translation quality itself, along with its effectiveness as training data. Compared with the conventional approach that translates each data component separately, our method yields better training data that enhances the performance of the trained model by 2.690 points for the web page ranking (WPR) task, and 0.845 for the question generation (QG) task in the XGLUE benchmark.