Abstract:The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
Abstract:Language encodes societal beliefs about social groups through word patterns. While computational methods like word embeddings enable quantitative analysis of these patterns, studies have primarily examined gradual shifts in Western contexts. We present the first large-scale computational analysis of Chinese state-controlled media (1950-2019) to examine how revolutionary social transformations are reflected in official linguistic representations of social groups. Using diachronic word embeddings at multiple temporal resolutions, we find that Chinese representations differ significantly from Western counterparts, particularly regarding economic status, ethnicity, and gender. These representations show distinct evolutionary dynamics: while stereotypes of ethnicity, age, and body type remain remarkably stable across political upheavals, representations of gender and economic classes undergo dramatic shifts tracking historical transformations. This work advances our understanding of how officially sanctioned discourse encodes social structure through language while highlighting the importance of non-Western perspectives in computational social science.
Abstract:Extracting high-quality structured information from scientific literature is crucial for advancing material design through data-driven methods. Despite the considerable research in natural language processing for dataset extraction, effective approaches for multi-tuple extraction in scientific literature remain scarce due to the complex interrelations of tuples and contextual ambiguities. In the study, we illustrate the multi-tuple extraction of mechanical properties from multi-principal-element alloys and presents a novel framework that combines an entity extraction model based on MatSciBERT with pointer networks and an allocation model utilizing inter- and intra-entity attention. Our rigorous experiments on tuple extraction demonstrate impressive F1 scores of 0.963, 0.947, 0.848, and 0.753 across datasets with 1, 2, 3, and 4 tuples, confirming the effectiveness of the model. Furthermore, an F1 score of 0.854 was achieved on a randomly curated dataset. These results highlight the model's capacity to deliver precise and structured information, offering a robust alternative to large language models and equipping researchers with essential data for fostering data-driven innovations.