Abstract:Virtual try-on (VTO) applications aim to improve the online shopping experience by allowing users to preview garments, before making purchase decisions. However, many VTO tools fail to consider the crucial relationship between a garment's size and the user's body size, often employing a one-size-fits-all approach when visualizing a clothing item. This results in poor size recommendations and purchase decisions leading to increased return rates. To address this limitation, we introduce SiCo, an online VTO system, where users can upload images of themselves and visualize how different sizes of clothing would look on their body to help make better-informed purchase decisions. Our user study shows SiCo's superiority over baseline VTO. The results indicate that our approach significantly enhances user ability to gauge the appearance of outfits on their bodies and boosts their confidence in selecting clothing sizes that match desired goals. Based on our evaluation, we believe our VTO design has the potential to reduce return rates and enhance the online clothes shopping experience. Our code is available at https://github.com/SherryXTChen/SiCo.
Abstract:Video represents the majority of internet traffic today leading to a continuous technological arms race between generating higher quality content, transmitting larger file sizes and supporting network infrastructure. Adding to this is the recent COVID-19 pandemic fueled surge in the use of video conferencing tools. Since videos take up substantial bandwidth (~100 Kbps to few Mbps), improved video compression can have a substantial impact on network performance for live and pre-recorded content, providing broader access to multimedia content worldwide. In this work, we present a novel video compression pipeline, called Txt2Vid, which substantially reduces data transmission rates by compressing webcam videos ("talking-head videos") to a text transcript. The text is transmitted and decoded into a realistic reconstruction of the original video using recent advances in deep learning based voice cloning and lip syncing models. Our generative pipeline achieves two to three orders of magnitude reduction in the bitrate as compared to the standard audio-video codecs (encoders-decoders), while maintaining equivalent Quality-of-Experience based on a subjective evaluation by users (n=242) in an online study. The code for this work is available at https://github.com/tpulkit/txt2vid.git.