Abstract:Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector
Abstract:Large language models (LLMs) are known to perpetuate stereotypes and exhibit biases. Various strategies have been proposed to mitigate potential harms that may result from these biases, but most work studies biases in LLMs as a black-box problem without considering how concepts are represented within the model. We adapt techniques from representation engineering to study how the concept of "gender" is represented within LLMs. We introduce a new method that extracts concept representations via probability weighting without labeled data and efficiently selects a steering vector for measuring and manipulating the model's representation. We also present a projection-based method that enables precise steering of model predictions and demonstrate its effectiveness in mitigating gender bias in LLMs.