Abstract:Targeted maintenance strategies, ensuring the dependability and safety of industrial machinery. However, current modeling techniques for assessing both local and global correlation of battery degradation sequences are inefficient and difficult to meet the needs in real-life applications. For this reason, we propose a novel deep learning architecture, multiscale dual-path feature aggregation network (MDFA-Net), for RUL prediction. MDFA-Net consists of dual-path networks, the first path network, multiscale feature network (MF-Net) that maintains the shallow information and avoids missing information, and the second path network is an encoder network (EC-Net) that captures the continuous trend of the sequences and retains deep details. Integrating both deep and shallow attributes effectively grasps both local and global patterns. Testing conducted with two publicly available Lithium-ion battery datasets reveals our approach surpasses existing top-tier methods in RUL forecasting, accurately mapping the capacity degradation trajectory.
Abstract:2D irregular packing is a classic combinatorial optimization problem with various applications, such as material utilization and texture atlas generation. This NP-hard problem requires efficient algorithms to optimize space utilization. Conventional numerical methods suffer from slow convergence and high computational cost. Existing learning-based methods, such as the score-based diffusion model, also have limitations, such as no rotation support, frequent collisions, and poor adaptability to arbitrary boundaries, and slow inferring. The difficulty of learning from teacher packing is to capture the complex geometric relationships among packing examples, which include the spatial (position, orientation) relationships of objects, their geometric features, and container boundary conditions. Representing these relationships in latent space is challenging. We propose GFPack++, an attention-based gradient field learning approach that addresses this challenge. It consists of two pivotal strategies: \emph{attention-based geometry encoding} for effective feature encoding and \emph{attention-based relation encoding} for learning complex relationships. We investigate the utilization distribution between the teacher and inference data and design a weighting function to prioritize tighter teacher data during training, enhancing learning effectiveness. Our diffusion model supports continuous rotation and outperforms existing methods on various datasets. We achieve higher space utilization over several widely used baselines, one-order faster than the previous diffusion-based method, and promising generalization for arbitrary boundaries. We plan to release our source code and datasets to support further research in this direction.