Alert button
Picture for Yair Carmon

Yair Carmon

Alert button

A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and Minimizing the Maximum of Smooth Functions

Nov 17, 2023
Yair Carmon, Arun Jambulapati, Yujia Jin, Aaron Sidford

We design algorithms for minimizing $\max_{i\in[n]} f_i(x)$ over a $d$-dimensional Euclidean or simplex domain. When each $f_i$ is $1$-Lipschitz and $1$-smooth, our method computes an $\epsilon$-approximate solution using $\widetilde{O}(n \epsilon^{-1/3} + \epsilon^{-2})$ gradient and function evaluations, and $\widetilde{O}(n \epsilon^{-4/3})$ additional runtime. For large $n$, our evaluation complexity is optimal up to polylogarithmic factors. In the special case where each $f_i$ is linear -- which corresponds to finding a near-optimal primal strategy in a matrix game -- our method finds an $\epsilon$-approximate solution in runtime $\widetilde{O}(n (d/\epsilon)^{2/3} + nd + d\epsilon^{-2})$. For $n>d$ and $\epsilon=1/\sqrt{n}$ this improves over all existing first-order methods. When additionally $d = \omega(n^{8/11})$ our runtime also improves over all known interior point methods. Our algorithm combines three novel primitives: (1) A dynamic data structure which enables efficient stochastic gradient estimation in small $\ell_2$ or $\ell_1$ balls. (2) A mirror descent algorithm tailored to our data structure implementing an oracle which minimizes the objective over these balls. (3) A simple ball oracle acceleration framework suitable for non-Euclidean geometry.

Viaarxiv icon

Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond

May 22, 2023
Itai Kreisler, Mor Shpigel Nacson, Daniel Soudry, Yair Carmon

Figure 1 for Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Figure 2 for Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Figure 3 for Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Figure 4 for Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond

Recent research shows that when Gradient Descent (GD) is applied to neural networks, the loss almost never decreases monotonically. Instead, the loss oscillates as gradient descent converges to its ''Edge of Stability'' (EoS). Here, we find a quantity that does decrease monotonically throughout GD training: the sharpness attained by the gradient flow solution (GFS)-the solution that would be obtained if, from now until convergence, we train with an infinitesimal step size. Theoretically, we analyze scalar neural networks with the squared loss, perhaps the simplest setting where the EoS phenomena still occur. In this model, we prove that the GFS sharpness decreases monotonically. Using this result, we characterize settings where GD provably converges to the EoS in scalar networks. Empirically, we show that GD monotonically decreases the GFS sharpness in a squared regression model as well as practical neural network architectures.

Viaarxiv icon

DataComp: In search of the next generation of multimodal datasets

May 03, 2023
Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt

Figure 1 for DataComp: In search of the next generation of multimodal datasets
Figure 2 for DataComp: In search of the next generation of multimodal datasets
Figure 3 for DataComp: In search of the next generation of multimodal datasets
Figure 4 for DataComp: In search of the next generation of multimodal datasets

Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP, Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a benchmark where the training code is fixed and researchers innovate by proposing new training sets. We provide a testbed for dataset experiments centered around a new candidate pool of 12.8B image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing on 38 downstream test sets. Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design facilitates the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow is a promising way of improving multimodal datasets. We introduce DataComp-1B, a dataset created by applying a simple filtering algorithm to the 12.8B candidate pool. The resulting 1.4B subset enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points while requiring 9x less training compute. We also outperform OpenAI's CLIP ViT-L/14 by 3.7 percentage points, which is trained with the same compute budget as our model. These gains highlight the potential for improving model performance by carefully curating training sets. We view DataComp-1B as only the first step and hope that DataComp paves the way toward the next generation of multimodal datasets.

Viaarxiv icon

DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule

Feb 08, 2023
Maor Ivgi, Oliver Hinder, Yair Carmon

Figure 1 for DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Figure 2 for DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Figure 3 for DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Figure 4 for DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule

We propose a tuning-free dynamic SGD step size formula, which we call Distance over Gradients (DoG). The DoG step sizes depend on simple empirical quantities (distance from the initial point and norms of gradients) and have no ``learning rate'' parameter. Theoretically, we show that a slight variation of the DoG formula enjoys strong parameter-free convergence guarantees for stochastic convex optimization assuming only \emph{locally bounded} stochastic gradients. Empirically, we consider a broad range of vision and language transfer learning tasks, and show that DoG's performance is close to that of SGD with tuned learning rate. We also propose a per-layer variant of DoG that generally outperforms tuned SGD, approaching the performance of tuned Adam.

Viaarxiv icon

ReSQueing Parallel and Private Stochastic Convex Optimization

Jan 01, 2023
Yair Carmon, Arun Jambulapati, Yujia Jin, Yin Tat Lee, Daogao Liu, Aaron Sidford, Kevin Tian

Figure 1 for ReSQueing Parallel and Private Stochastic Convex Optimization
Figure 2 for ReSQueing Parallel and Private Stochastic Convex Optimization
Figure 3 for ReSQueing Parallel and Private Stochastic Convex Optimization

We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.

Viaarxiv icon

Malign Overfitting: Interpolation Can Provably Preclude Invariance

Nov 28, 2022
Yoav Wald, Gal Yona, Uri Shalit, Yair Carmon

Figure 1 for Malign Overfitting: Interpolation Can Provably Preclude Invariance
Figure 2 for Malign Overfitting: Interpolation Can Provably Preclude Invariance
Figure 3 for Malign Overfitting: Interpolation Can Provably Preclude Invariance
Figure 4 for Malign Overfitting: Interpolation Can Provably Preclude Invariance

Learned classifiers should often possess certain invariance properties meant to encourage fairness, robustness, or out-of-distribution generalization. However, multiple recent works empirically demonstrate that common invariance-inducing regularizers are ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of ``benign overfitting," in which models generalize well despite interpolating, might not favorably extend to settings in which robustness or fairness are desirable. In this work we provide a theoretical justification for these observations. We prove that -- even in the simplest of settings -- any interpolating learning rule (with arbitrarily small margin) will not satisfy these invariance properties. We then propose and analyze an algorithm that -- in the same setting -- successfully learns a non-interpolating classifier that is provably invariant. We validate our theoretical observations on simulated data and the Waterbirds dataset.

Viaarxiv icon

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Jun 17, 2022
Yair Carmon, Arun Jambulapati, Yujia Jin, Aaron Sidford

Figure 1 for RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Figure 2 for RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

The accelerated proximal point algorithm (APPA), also known as "Catalyst", is a well-established reduction from convex optimization to approximate proximal point computation (i.e., regularized minimization). This reduction is conceptually elegant and yields strong convergence rate guarantees. However, these rates feature an extraneous logarithmic term arising from the need to compute each proximal point to high accuracy. In this work, we propose a novel Relaxed Error Criterion for Accelerated Proximal Point (RECAPP) that eliminates the need for high accuracy subproblem solutions. We apply RECAPP to two canonical problems: finite-sum and max-structured minimization. For finite-sum problems, we match the best known complexity, previously obtained by carefully-designed problem-specific algorithms. For minimizing $\max_y f(x,y)$ where $f$ is convex in $x$ and strongly-concave in $y$, we improve on the best known (Catalyst-based) bound by a logarithmic factor.

* Accepted at ICML'22 
Viaarxiv icon

Making SGD Parameter-Free

May 04, 2022
Yair Carmon, Oliver Hinder

We develop an algorithm for parameter-free stochastic convex optimization (SCO) whose rate of convergence is only a double-logarithmic factor larger than the optimal rate for the corresponding known-parameter setting. In contrast, the best previously known rates for parameter-free SCO are based on online parameter-free regret bounds, which contain unavoidable excess logarithmic terms compared to their known-parameter counterparts. Our algorithm is conceptually simple, has high-probability guarantees, and is also partially adaptive to unknown gradient norms, smoothness, and strong convexity. At the heart of our results is a novel parameter-free certificate for SGD step size choice, and a time-uniform concentration result that assumes no a-priori bounds on SGD iterates.

Viaarxiv icon

Distributionally Robust Optimization via Ball Oracle Acceleration

Mar 24, 2022
Yair Carmon, Danielle Hausler

Figure 1 for Distributionally Robust Optimization via Ball Oracle Acceleration

We develop and analyze algorithms for distributionally robust optimization (DRO) of convex losses. In particular, we consider group-structured and bounded $f$-divergence uncertainty sets. Our approach relies on an accelerated method that queries a ball optimization oracle, i.e., a subroutine that minimizes the objective within a small ball around the query point. Our main contribution is efficient implementations of this oracle for DRO objectives. For DRO with $N$ non-smooth loss functions, the resulting algorithms find an $\epsilon$-accurate solution with $\widetilde{O}\left(N\epsilon^{-2/3} + \epsilon^{-2}\right)$ first-order oracle queries to individual loss functions. Compared to existing algorithms for this problem, we improve complexity by a factor of up to $\epsilon^{-4/3}$.

Viaarxiv icon