Abstract:Speech Large Language Models (SpeechLLMs) have achieved breakthroughs in multilingual speech-to-text translation (S2TT). However, existing approaches often overlook semantic commonalities across source languages, leading to biased translation performance. In this work, we propose \textbf{POTSA} (Parallel Optimal Transport for Speech Alignment), a new framework based on cross-lingual parallel speech pairs and Optimal Transport (OT), designed to bridge high- and low-resource translation gaps. First, we introduce a Bias Compensation module to coarsely align initial speech representations across languages. Second, we impose token-level OT constraints on a Q-Former using parallel speech pairs to establish fine-grained consistency of representations. Then, we apply a layer scheduling strategy to focus OT constraints on the most semantically beneficial layers. Experiments on the FLEURS dataset show that our method achieves SOTA performance, with +0.93 BLEU on average over five common languages and +5.05 BLEU on zero-shot languages, using only 10 hours of parallel speech per source language.




Abstract:3D convolutions are commonly employed by demosaicking neural models, in the same way as solving other image restoration problems. Counter-intuitively, we show that 3D convolutions implicitly impede the RGB color spectra from exchanging complementary information, resulting in spectral-inconsistent inference of the local spatial high frequency components. As a consequence, shallow 3D convolution networks suffer the Moir\'e artifacts, but deep 3D convolutions cause over-smoothness. We analyze the fundamental difference between demosaicking and other problems that predict lost pixels between available ones (e.g., super-resolution reconstruction), and present the underlying reasons for the confliction between Moir\'e-free and detail-preserving. From the new perspective, our work decouples the common standard convolution procedure to spectral and spatial feature aggregations, which allow strengthening global communication in the spectral dimension while respecting local contrast in the spatial dimension. We apply our demosaicking model to two tasks: Joint Demosaicking-Denoising and Independently Demosaicking. In both applications, our model substantially alleviates artifacts such as Moir\'e and over-smoothness at similar or lower computational cost to currently top-performing models, as validated by diverse evaluations. Source code will be released along with paper publication.