Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:This paper investigates secure communications in a near-field multi-functional integrated sensing, communication, and powering (ISCAP) system with an extremely large-scale antenna arrays (ELAA) equipped at the base station (BS). In this system, the BS sends confidential messages to a single communication user (CU), and at the same time wirelessly senses a point target and charges multiple energy receivers (ERs). It is assumed that the ERs and the sensing target are potential eavesdroppers that may attempt to intercept the confidential messages intended for the CU. We consider the joint transmit beamforming design to support secure communications while ensuring the sensing and powering requirements. In particular, the BS transmits dedicated sensing/energy beams in addition to the information beam, which also play the role of artificial noise (AN) for effectively jamming potential eavesdroppers. Building upon this, we maximize the secrecy rate at the CU, subject to the maximum \ac{crb} constraints for target sensing and the minimum harvested energy constraints for the ERs. Although the formulated joint beamforming problem is non-convex and challenging to solve, we acquire the optimal solution via the semi-definite relaxation (SDR) and fractional programming techniques together with a one-dimensional (1D) search. Subsequently, we present two alternative designs based on zero-forcing (ZF) beamforming and maximum ratio transmission (MRT), respectively. Finally, our numerical results show that our proposed approaches exploit both the distance-domain resolution of near-field ELAA and the joint beamforming design for enhancing secure communication performance while ensuring the sensing and powering requirements in ISCAP, especially when the CU and the target and ER eavesdroppers are located at the same angle (but different distances) with respect to the BS.

Via

Abstract:This paper investigates the sensing performance of two intelligent reflecting surface (IRS)-enabled non-line-of-sight (NLoS) sensing systems with fully-passive and semi-passive IRSs, respectively. In particular, we consider a fundamental setup with one base station (BS), one uniform linear array (ULA) IRS, and one point target in the NLoS region of the BS. Accordingly, we analyze the sensing signal-to-noise ratio (SNR) performance for a target detection scenario and the estimation Cram\'er-Rao bound (CRB) performance for a target's direction-of-arrival (DoA) estimation scenario, in cases where the transmit beamforming at the BS and the reflective beamforming at the IRS are jointly optimized. First, for the target detection scenario, we characterize the maximum sensing SNR when the BS-IRS channels are line-of-sight (LoS) and Rayleigh fading, respectively. It is revealed that when the number of reflecting elements $N$ equipped at the IRS becomes sufficiently large, the maximum sensing SNR increases proportionally to $N^2$ for the semi-passive-IRS sensing system, but proportionally to $N^4$ for the fully-passive-IRS counterpart. Then, for the target's DoA estimation scenario, we analyze the minimum CRB performance when the BS-IRS channel follows Rayleigh fading. Specifically, when $N$ grows, the minimum CRB decreases inversely proportionally to $N^4$ and $N^6$ for the semi-passive and fully-passive-IRS sensing systems, respectively. Finally, numerical results are presented to corroborate our analysis across various transmit and reflective beamforming design schemes under general channel setups. It is shown that the fully-passive-IRS sensing system outperforms the semi-passive counterpart when $N$ exceeds a certain threshold. This advantage is attributed to the additional reflective beamforming gain in the IRS-BS path, which efficiently compensates for the path loss for a large $N$.

Via

Abstract:This paper compares the signal-to-noise ratio (SNR) performance between the fully-passive intelligent reflecting surface (IRS)-enabled non-line-of-sight (NLoS) sensing versus its semi-passive counterpart. In particular, we consider a basic setup with one base station (BS), one uniform linear array (ULA) IRS, and one point target at the BS's NLoS region, in which the BS and the IRS jointly design the transmit and reflective beamforming for performance optimization. By considering two special cases with the BS-IRS channels being line-of-sight (LoS) and Rayleigh fading, respectively, we derive the corresponding asymptotic sensing SNR when the number of reflecting elements $N$ at the IRS becomes sufficiently large. It is revealed that in the two special cases, the sensing SNR increases proportional to $N^2$ for the semi-passive IRS sensing system, but proportional to $N^4$ for the fully-passive IRS sensing system. As such, the fully-passive IRS sensing system is shown to outperform the semi-passive counterpart when $N$ becomes large, which is due to the fact that the fully-passive IRS sensing enjoys additional reflective beamforming gain from the IRS to the BS that outweighs the resultant path loss in this case. Finally, numerical results are presented to validate our analysis under different transmit and reflective beamforming design schemes.

Via

Abstract:This paper studies a multi-intelligent-reflecting-surface-(IRS)-enabled integrated sensing and communications (ISAC) system, in which multiple IRSs are installed to help the base station (BS) provide ISAC services at separate line-of-sight (LoS) blocked areas. We focus on the scenario with semi-passive uniform linear array (ULA) IRSsfor sensing, in which each IRS is integrated with dedicated sensors for processing echo signals, and each IRS simultaneously serves one sensing target and one communication user (CU) in its coverage area. In particular, we suppose that the BS sends combined information and dedicated sensing signals for ISAC, and we consider two cases with point and extended targets, in which each IRS aims to estimate the direction-of-arrival (DoA) of the corresponding target and the complete target response matrix, respectively. Under this setup, we first derive the closed-form Cram{\'e}r-Rao bounds (CRBs) for parameters estimation under the two target models. For the point target case, the CRB for AoA estimation is shown to be inversely proportional to the cubic of the number of sensors at each IRS, while for the extended target case, the CRB for target response matrix estimation is proportional to the number of IRS sensors. Next, we consider two different types of CU receivers that can and cannot cancel the interference from dedicated sensing signals prior to information decoding. To achieve fair and optimized sensing performance, we minimize the maximum CRB at all IRSs for the two target cases, via jointly optimizing the transmit beamformers at the BS and the reflective beamformers at the multiple IRSs, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at individual CUs, the maximum transmit power constraint at the BS, and the unit-modulus constraints at the multiple IRSs.

Via

Abstract:This correspondence studies the wireless powered over-the-air computation (AirComp) for achieving sustainable wireless data aggregation (WDA) by integrating AirComp and wireless power transfer (WPT) into a joint design. In particular, we consider that a multi-antenna hybrid access point (HAP) employs the transmit energy beamforming to charge multiple single-antenna low-power wireless devices (WDs) in the downlink, and the WDs use the harvested energy to simultaneously send their messages to the HAP for AirComp in the uplink. Under this setup, we minimize the computation mean square error (MSE), by jointly optimizing the transmit energy beamforming and the receive AirComp beamforming at the HAP, as well as the transmit power at the WDs, subject to the maximum transmit power constraint at the HAP and the wireless energy harvesting constraints at individual WDs. To tackle the non-convex computation MSE minimization problem, we present an efficient algorithm to find a converged high-quality solution by using the alternating optimization technique. Numerical results show that the proposed joint WPT-AirComp approach significantly reduces the computation MSE, as compared to other benchmark schemes.

Via

Figures and Tables:

Abstract:This correspondence paper studies a network integrated sensing and communication (ISAC) system that unifies the interference channel for communication and distributed radar sensing. In this system, a set of distributed ISAC transmitters send individual messages to their respective communication users (CUs), and at the same time cooperate with multiple sensing receivers to estimate the location of one target. We exploit the coordinated power control among ISAC transmitters to minimize their total transmit power while ensuring the minimum signal-to-interference-plus-noise ratio (SINR) constraints at individual CUs and the maximum Cram\'{e}r-Rao lower bound (CRLB) requirement for target location estimation. Although the formulated coordinated power control problem is non-convex and difficult to solve in general, we propose two efficient algorithms to obtain high-quality solutions based on the semi-definite relaxation (SDR) and CRLB approximation, respectively. Numerical results show that the proposed designs achieve substantial performance gains in terms of power reduction, as compared to the benchmark with a heuristic separate communication-sensing design.

Via