Abstract:Large language models (LLMs) exhibit powerful capabilities but risk memorizing sensitive personally identifiable information (PII) from their training data, posing significant privacy concerns. While machine unlearning techniques aim to remove such data, they predominantly depend on access to the training data. This requirement is often impractical, as training data in real-world deployments is commonly proprietary or inaccessible. To address this limitation, we propose Data-Free Selective Unlearning (DFSU), a novel privacy-preserving framework that removes sensitive PII from an LLM without requiring its training data. Our approach first synthesizes pseudo-PII through language model inversion, then constructs token-level privacy masks for these synthetic samples, and finally performs token-level selective unlearning via a contrastive mask loss within a low-rank adaptation (LoRA) subspace. Extensive experiments on the AI4Privacy PII-Masking dataset using Pythia models demonstrate that our method effectively removes target PII while maintaining model utility.
Abstract:Most biomedical pretrained language models are monolingual and cannot handle the growing cross-lingual requirements. The scarcity of non-English domain corpora, not to mention parallel data, poses a significant hurdle in training multilingual biomedical models. Since knowledge forms the core of domain-specific corpora and can be translated into various languages accurately, we propose a model called KBioXLM, which transforms the multilingual pretrained model XLM-R into the biomedical domain using a knowledge-anchored approach. We achieve a biomedical multilingual corpus by incorporating three granularity knowledge alignments (entity, fact, and passage levels) into monolingual corpora. Then we design three corresponding training tasks (entity masking, relation masking, and passage relation prediction) and continue training on top of the XLM-R model to enhance its domain cross-lingual ability. To validate the effectiveness of our model, we translate the English benchmarks of multiple tasks into Chinese. Experimental results demonstrate that our model significantly outperforms monolingual and multilingual pretrained models in cross-lingual zero-shot and few-shot scenarios, achieving improvements of up to 10+ points. Our code is publicly available at https://github.com/ngwlh-gl/KBioXLM.