Abstract:Robotic foundation models trained on large-scale manipulation datasets have shown promise in learning generalist policies, but they often overfit to specific viewpoints, robot arms, and especially parallel-jaw grippers due to dataset biases. To address this limitation, we propose Cross-Embodiment Interface (\CEI), a framework for cross-embodiment learning that enables the transfer of demonstrations across different robot arm and end-effector morphologies. \CEI introduces the concept of \textit{functional similarity}, which is quantified using Directional Chamfer Distance. Then it aligns robot trajectories through gradient-based optimization, followed by synthesizing observations and actions for unseen robot arms and end-effectors. In experiments, \CEI transfers data and policies from a Franka Panda robot to \textbf{16} different embodiments across \textbf{3} tasks in simulation, and supports bidirectional transfer between a UR5+AG95 gripper robot and a UR5+Xhand robot across \textbf{6} real-world tasks, achieving an average transfer ratio of 82.4\%. Finally, we demonstrate that \CEI can also be extended with spatial generalization and multimodal motion generation capabilities using our proposed techniques. Project website: https://cross-embodiment-interface.github.io/




Abstract:Data-driven robotic learning faces an obvious dilemma: robust policies demand large-scale, high-quality demonstration data, yet collecting such data remains a major challenge owing to high operational costs, dependence on specialized hardware, and the limited spatial generalization capability of current methods. The Universal Manipulation Interface (UMI) relaxes the strict hardware requirements for data collection, but it is restricted to capturing only RGB images of a scene and omits the 3D geometric information on which many tasks rely. Inspired by DemoGen, we propose UMIGen, a unified framework that consists of two key components: (1) Cloud-UMI, a handheld data collection device that requires no visual SLAM and simultaneously records point cloud observation-action pairs; and (2) a visibility-aware optimization mechanism that extends the DemoGen pipeline to egocentric 3D observations by generating only points within the camera's field of view. These two components enable efficient data generation that aligns with real egocentric observations and can be directly transferred across different robot embodiments without any post-processing. Experiments in both simulated and real-world settings demonstrate that UMIGen supports strong cross-embodiment generalization and accelerates data collection in diverse manipulation tasks.




Abstract:Tactile perception is essential for embodied agents to understand physical attributes of objects that cannot be determined through visual inspection alone. While existing approaches have made progress in visual and language modalities for physical understanding, they fail to effectively incorporate tactile information that provides crucial haptic feedback for real-world interaction. In this paper, we present VTV-LLM, the first multi-modal large language model for universal Visuo-Tactile Video (VTV) understanding that bridges the gap between tactile perception and natural language. To address the challenges of cross-sensor and cross-modal integration, we contribute VTV150K, a comprehensive dataset comprising 150,000 video frames from 100 diverse objects captured across three different tactile sensors (GelSight Mini, DIGIT, and Tac3D), annotated with four fundamental tactile attributes (hardness, protrusion, elasticity, and friction). We develop a novel three-stage training paradigm that includes VTV enhancement for robust visuo-tactile representation, VTV-text alignment for cross-modal correspondence, and text prompt finetuning for natural language generation. Our framework enables sophisticated tactile reasoning capabilities including feature assessment, comparative analysis, scenario-based decision making and so on. Experimental evaluations demonstrate that VTV-LLM achieves superior performance in tactile video understanding tasks, establishing a foundation for more intuitive human-machine interaction in tactile domains.