Magnetic resonance imaging~(MRI) have played a crucial role in brain disease diagnosis, with which a range of computer-aided artificial intelligence methods have been proposed. However, the early explorations usually focus on the limited types of brain diseases in one study and train the model on the data in a small scale, yielding the bottleneck of generalization. Towards a more effective and scalable paradigm, we propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain. Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics. Different from previous pre-training techniques for the unitary vision or textual feature, or with the brute-force alignment between vision and language information, we leverage the unique characteristic of report information in different granularity to build a hierarchical alignment mechanism, which strengthens the efficiency in feature learning. Our UniBrain is validated on three real world datasets with severe class imbalance and the public BraTS2019 dataset. It not only consistently outperforms all state-of-the-art diagnostic methods by a large margin and provides a superior grounding performance but also shows comparable performance compared to expert radiologists on certain disease types.
In this study, we aim to initiate the development of Radiology Foundation Model, termed as RadFM.We consider the construction of foundational models from the perspectives of data, model design, and evaluation thoroughly. Our contribution can be concluded as follows: (i), we construct a large-scale Medical Multi-modal Dataset, MedMD, consisting of 16M 2D and 3D medical scans. To the best of our knowledge, this is the first multi-modal dataset containing 3D medical scans. (ii), We propose an architecture that enables visually conditioned generative pre-training, allowing for the integration of text input interleaved with 2D or 3D medical scans to generate response for diverse radiologic tasks. The model was initially pre-trained on MedMD and subsequently domain-specific fine-tuned on RadMD, a radiologic cleaned version of MedMD, containing 3M radiologic visual-language pairs. (iii), we propose a new evaluation benchmark that comprises five tasks, aiming to comprehensively assess the capability of foundation models in handling practical clinical problems. Our experimental results confirm that RadFM significantly outperforms existing multi-modal foundation models. The codes, data, and model checkpoint will all be made publicly available to promote further research and development in the field.
In this paper, we focus on the problem of Medical Visual Question Answering (MedVQA), which is crucial in efficiently interpreting medical images with vital clinic-relevant information. Firstly, we reframe the problem of MedVQA as a generation task that naturally follows the human-machine interaction, we propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model. Secondly, we establish a scalable pipeline to construct a large-scale medical visual question-answering dataset, named PMC-VQA, which contains 227k VQA pairs of 149k images that cover various modalities or diseases. Thirdly, we pre-train our proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD and SLAKE, outperforming existing work by a large margin. Additionally, we propose a test set that has undergone manual verification, which is significantly more challenging, even the best models struggle to solve.
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding in various domains. These models can usually behave well on daily dialog, or question answering scenarios, however, in areas that value precision, for example, in medical applications, they often exhibit unsatisfactory performance due to a lack of domain-specific knowledge. In this report, we introduce PMC-LLaMA, an open-source language model that is acquired by fine-tuning an open-source language model on a total of 4.8 million biomedical academic papers for further injecting medical knowledge, enhancing its capability in medical domain. Our preliminary evaluations are conducted on three biomedical QA datasets, including PubMedQA, MedMCQA, and USMLE, showing that the our model after finetuning, i.e., PMC-LLaMA, demonstrates better understanding of biomedical domain-specific concepts, thus achieving high performance on QA benchmarks. The model and codes, along with an online demo, are publicly available.
Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity. To address this issue, we build and release PMC-OA, a biomedical dataset with 1.6M image-caption pairs collected from PubMedCentral's OpenAccess subset, which is 8 times larger than before. PMC-OA covers diverse modalities or diseases, with majority of the image-caption samples aligned at finer-grained level, i.e., subfigure and subcaption. While pretraining a CLIP-style model on PMC-OA, our model named PMC-CLIP achieves state-of-the-art results on various downstream tasks, including image-text retrieval on ROCO, MedMNIST image classification, Medical VQA, i.e. +8.1% R@10 on image-text retrieval, +3.9% accuracy on image classification.
Despite of the success of multi-modal foundation models pre-trained on large-scale data in natural language understanding and vision recognition, its counterpart in medical and clinical domains remains preliminary, due to the fine-grained recognition nature of the medical tasks with high demands on domain knowledge. Here, we propose a knowledge-enhanced vision-language pre-training approach for auto-diagnosis on chest X-ray images. The algorithm, named Knowledge-enhanced Auto Diagnosis~(KAD), first trains a knowledge encoder based on an existing medical knowledge graph, i.e., learning neural embeddings of the definitions and relationships between medical concepts and then leverages the pre-trained knowledge encoder to guide the visual representation learning with paired chest X-rays and radiology reports. We experimentally validate KAD's effectiveness on three external X-ray datasets. The zero-shot performance of KAD is not only comparable to that of the fully-supervised models but also, for the first time, superior to the average of three expert radiologists for three (out of five) pathologies with statistical significance. When the few-shot annotation is available, KAD also surpasses all existing approaches in finetuning settings, demonstrating the potential for application in different clinical scenarios.
In this paper, we consider the problem of disease diagnosis. Unlike the conventional learning paradigm that treats labels independently, we propose a knowledge-enhanced framework, that enables training visual representation with the guidance of medical domain knowledge. In particular, we make the following contributions: First, to explicitly incorporate experts' knowledge, we propose to learn a neural representation for the medical knowledge graph via contrastive learning, implicitly establishing relations between different medical concepts. Second, while training the visual encoder, we keep the parameters of the knowledge encoder frozen and propose to learn a set of prompt vectors for efficient adaptation. Third, we adopt a Transformer-based disease-query module for cross-model fusion, which naturally enables explainable diagnosis results via cross attention. To validate the effectiveness of our proposed framework, we conduct thorough experiments on three x-ray imaging datasets across different anatomy structures, showing our model is able to exploit the implicit relations between diseases/findings, thus is beneficial to the commonly encountered problem in the medical domain, namely, long-tailed and zero-shot recognition, which conventional methods either struggle or completely fail to realize.
In this paper, we consider the problem of enhancing self-supervised visual-language pre-training (VLP) with medical-specific knowledge, by exploiting the paired image-text reports from the radiological daily practice. In particular, we make the following contributions: First, unlike existing works that directly process the raw reports, we adopt a novel report filter to extract the medical entities, avoiding unnecessary complexity from language grammar and enhancing the supervision signals; Second, we propose a novel entity embedding module by querying an external knowledge description base, to exploit the rich context of additional information that the medical domain affords, and implicitly build relationships between entities in the language embedding space; Third, we propose a novel Transformer-based fusion model for spatially aligning the entity description with visual signals at the image patch level only with self-supervised learning, thus enabling the ability for spatial grounding; Fourth, we conduct thorough experiments to validate the effectiveness of our proposed architecture, and benchmark on numerous public benchmarks e.g., ChestX-ray14, RSNA Pneumonia, SIIM-ACR Pneumothorax, COVIDx CXR-2, COVID Rural, and EdemaSeverity. In both zero-shot and fine-tuning settings, our model has demonstrated strong performance compared with the former methods on disease classification and grounding.