Abstract:Recent studies on scaling up ranking models have achieved substantial improvement for recommendation systems and search engines. However, most large-scale ranking systems rely on item IDs, where each item is treated as an independent categorical symbol and mapped to a learned embedding. As items rapidly appear and disappear, these embeddings become difficult to train and maintain. This instability impedes effective learning of neural network parameters and limits the scalability of ranking models. In this paper, we show that semantic tokens possess greater scaling potential compared to item IDs. Our proposed framework TRM improves the token generation and application pipeline, leading to 33% reduction in sparse storage while achieving 0.85% AUC increase. Extensive experiments further show that TRM could consistently outperform state-of-the-art models when model capacity scales. Finally, TRM has been successfully deployed on large-scale personalized search engines, yielding 0.26% and 0.75% improvement on user active days and change query ratio respectively through A/B test.
Abstract:Due to the dynamically evolving nature of real-world query streams, relevance models struggle to generalize to practical search scenarios. A sophisticated solution is self-evolution techniques. However, in large-scale industrial settings with massive query streams, this technique faces two challenges: (1) informative samples are often sparse and difficult to identify, and (2) pseudo-labels generated by the current model could be unreliable. To address these challenges, in this work, we propose a Self-Evolving Relevance Model approach (SERM), which comprises two complementary multi-agent modules: a multi-agent sample miner, designed to detect distributional shifts and identify informative training samples, and a multi-agent relevance annotator, which provides reliable labels through a two-level agreement framework. We evaluate SERM in a large-scale industrial setting, which serves billions of user requests daily. Experimental results demonstrate that SERM can achieve significant performance gains through iterative self-evolution, as validated by extensive offline multilingual evaluations and online testing.