Abstract:Recent studies on scaling up ranking models have achieved substantial improvement for recommendation systems and search engines. However, most large-scale ranking systems rely on item IDs, where each item is treated as an independent categorical symbol and mapped to a learned embedding. As items rapidly appear and disappear, these embeddings become difficult to train and maintain. This instability impedes effective learning of neural network parameters and limits the scalability of ranking models. In this paper, we show that semantic tokens possess greater scaling potential compared to item IDs. Our proposed framework TRM improves the token generation and application pipeline, leading to 33% reduction in sparse storage while achieving 0.85% AUC increase. Extensive experiments further show that TRM could consistently outperform state-of-the-art models when model capacity scales. Finally, TRM has been successfully deployed on large-scale personalized search engines, yielding 0.26% and 0.75% improvement on user active days and change query ratio respectively through A/B test.
Abstract:Vision Transformers (ViTs) have demonstrated strong performance across a wide range of vision tasks, yet their substantial computational and memory demands hinder efficient deployment on resource-constrained mobile and edge devices. Pruning has emerged as a promising direction for reducing ViT complexity. However, existing approaches either (i) produce a single pruned model shared across all devices, ignoring device heterogeneity, or (ii) rely on fine-tuning with device-local data, which is often infeasible due to limited on-device resources and strict privacy constraints. As a result, current methods fall short of enabling task-customized ViT pruning in privacy-preserving mobile computing settings. This paper introduces TAP-ViTs, a novel task-adaptive pruning framework that generates device-specific pruned ViT models without requiring access to any raw local data. Specifically, to infer device-level task characteristics under privacy constraints, we propose a Gaussian Mixture Model (GMM)-based metric dataset construction mechanism. Each device fits a lightweight GMM to approximate its private data distribution and uploads only the GMM parameters. Using these parameters, the cloud selects distribution-consistent samples from public data to construct a task-representative metric dataset for each device. Based on this proxy dataset, we further develop a dual-granularity importance evaluation-based pruning strategy that jointly measures composite neuron importance and adaptive layer importance, enabling fine-grained, task-aware pruning tailored to each device's computational budget. Extensive experiments across multiple ViT backbones and datasets demonstrate that TAP-ViTs consistently outperforms state-of-the-art pruning methods under comparable compression ratios.