Abstract:Multiple mobile manipulators show superiority in the tasks requiring mobility and dexterity compared with a single robot, especially when manipulating/transporting bulky objects. When the object and the manipulators are rigidly connected, closed-chain will form and the motion of the whole system will be restricted onto a lower-dimensional manifold. However, current research on multi-robot motion planning did not fully consider the formation of the whole system, the redundancy of the mobile manipulator and obstacles in the environment, which make the tasks challenging. Therefore, this paper proposes a hierarchical framework to efficiently solve the above challenges, where the centralized layer plans the object's motion offline and the decentralized layer independently explores the redundancy of each robot in real-time. In addition, closed-chain, obstacle-avoidance and the lower bound of the formation constraints are guaranteed in the centralized layer, which cannot be achieved simultaneously by other planners. Moreover, capability map, which represents the distribution of the formation constraint, is applied to speed up the two layers. Both simulation and experimental results show that the proposed framework outperforms the benchmark planners significantly. The system could bypass or cross obstacles in cluttered environments, and the framework can be applied to different numbers of heterogeneous mobile manipulators.
Abstract:This paper proposes a perception-shared and swarm trajectory global optimal (STGO) algorithm fused UAVs formation motion planning framework aided by an active sensing system. First, the point cloud received by each UAV is fit by the gaussian mixture model (GMM) and transmitted in the swarm. Resampling from the received GMM contributes to a global map, which is used as the foundation for consensus. Second, to improve flight safety, an active sensing system is designed to plan the observation angle of each UAV considering the unknown field, overlap of the field of view (FOV), velocity direction and smoothness of yaw rotation, and this planning problem is solved by the distributed particle swarm optimization (DPSO) algorithm. Last, for the formation motion planning, to ensure obstacle avoidance, the formation structure is allowed for affine transformation and is treated as the soft constraint on the control points of the B-spline. Besides, the STGO is introduced to avoid local minima. The combination of GMM communication and STGO guarantees a safe and strict consensus between UAVs. Tests on different formations in the simulation show that our algorithm can contribute to a strict consensus and has a success rate of at least 80% for obstacle avoidance in a dense environment. Besides, the active sensing system can increase the success rate of obstacle avoidance from 50% to 100% in some scenarios.
Abstract:Dynamic occupancy maps were proposed in recent years to model the obstacles in dynamic environments. Among these maps, the particle-based map offers a solid theoretical basis and the ability to model complex-shaped obstacles. Current particle-based maps describe the occupancy status in discrete grid form and suffer from the grid size problem, namely: large grid size is unfavorable for path planning while small grid size lowers efficiency and causes gaps and inconsistencies. To tackle this problem, this paper generalizes the particle-based map into continuous space and builds an efficient 3D local map. A dual-structure subspace division paradigm, composed of a voxel subspace division and a novel pyramid-like subspace division, is proposed to propagate particles and update the map efficiently with the consideration of occlusions. The occupancy status of an arbitrary point can then be estimated with the cardinality expectation. To reduce the noise in modeling static and dynamic obstacles simultaneously, an initial velocity estimation approach and a mixture model are utilized. Experimental results show that our map can effectively and efficiently model both dynamic obstacles and static obstacles. Compared to the state-of-the-art grid-form particle-based map, our map enables continuous occupancy estimation and substantially improves the performance in different resolutions. We also deployed the map on a quadrotor to demonstrate the bright prospect of using this map in obstacle avoidance tasks of small-scale robotics systems.
Abstract:Although multifarious variants of convolutional neural networks (CNNs) have proved successful in cardiac index quantification, they seem vulnerable to mild input perturbations, e.g., spatial transformations, image distortions, and adversarial attacks. Such brittleness erodes our trust in CNN-based automated diagnosis of various cardiovascular diseases. In this work, we describe a simple and effective method to learn robust CNNs for left ventricle (LV) quantification, including cavity and myocardium areas, directional dimensions, and regional wall thicknesses. The key to the success of our approach is the use of the biologically-inspired steerable pyramid transform (SPT) as fixed front-end processing, which brings three computational advantages to LV quantification. First, the basis functions of SPT match the anatomical structure of the LV as well as the geometric characteristics of the estimated indices. Second, SPT enables sharing a CNN across different orientations as a form of parameter regularization, and explicitly captures the scale variations of the LV in a natural way. Third, the residual highpass subband can be conveniently discarded to further encourage robust feature learning. A concise and effective metric, named Robustness Ratio, is proposed to evaluate the robustness under various input perturbations. Extensive experiments on 145 cardiac sequences show that our SPT-augmented method performs favorably against state-of-the-art algorithms in terms of prediction accuracy, but is significantly more robust under input perturbations.
Abstract:Flying robots such as the quadrotor could provide an efficient approach for medical treatment or sensor placing of wild animals. In these applications, continuously targeting the moving animal is a crucial requirement. Due to the underactuated characteristics of the quadrotor and the coupled kinematics with the animal, nonlinear optimal tracking approaches, other than smooth feedback control, are required. However, with severe nonlinearities, it would be time-consuming to evaluate control inputs, and real-time tracking may not be achieved with generic optimizers onboard. To tackle this problem, a novel efficient egocentric regulation approach with high computational efficiency is proposed in this paper. Specifically, it directly formulates the optimal tracking problem in an egocentric manner regarding the quadrotor's body coordinates. Meanwhile, the nonlinearities of the system are peeled off through a mapping of the feedback states as well as control inputs, between the inertial and body coordinates. In this way, the proposed efficient egocentric regulator only requires solving a quadratic performance objective with linear constraints and then generate control inputs analytically. Comparative simulations and mimic biological experiment are carried out to verify the effectiveness and computational efficiency. Results demonstrate that the proposed control approach presents the highest and stablest computational efficiency than generic optimizers on different platforms. Particularly, on a commonly utilized onboard computer, our method can compute the control action in approximately 0.3 ms, which is on the order of 350 times faster than that of generic nonlinear optimizers, establishing a control frequency around 3000 Hz.
Abstract:This paper presents a novel vision-based obstacle avoidance system for flying robots working in dynamic environments. Instead of fusing multiple sensors to enlarge the view field, we introduce a bio-inspired solution that utilizes a stereo camera with independent rotational DOF to sense the obstacles actively. In particular, the rotation is planned heuristically by multiple objectives that can benefit flight safety, including tracking dynamic obstacles, observing the heading direction, and exploring the previously unseen area. With this sensing result, a flight path is planned based on real-time sampling and collision checking in state space, which constitutes an active sense and avoid (ASAA) system. Experiments demonstrate that this system is capable of handling environments with dynamic obstacles and abrupt changes in goal direction. Since only one stereo camera is utilized, this system provides a low-cost but effective approach to overcome the view field limitation in visual navigation.
Abstract:While training an end-to-end navigation network in the real world is usually of high cost, simulation provides a safe and cheap environment in this training stage. However, training neural network models in simulation brings up the problem of how to effectively transfer the model from simulation to the real world (sim-to-real). In this work, we regard the environment representation as a crucial element in this transfer process and propose a visual information pyramid (VIP) model to systematically investigate a practical environment representation. A novel representation composed of spatial and semantic information synthesis is then established accordingly, where noise model embedding is particularly considered. To explore the effectiveness of this representation, we compared the performance with representations popularly used in the literature in both simulated and real-world scenarios. Results suggest that our environment representation stands out. Furthermore, an analysis on the feature map is implemented to investigate the effectiveness through inner reaction, which could be irradiative for future researches on end-to-end navigation.