Abstract:Prior Arbitrary-Scale Image Super-Resolution (ASISR) methods often experience a significant performance decline when the upsampling factor exceeds the range covered by the training data, introducing substantial blurring. To address this issue, we propose a unified model, Stroke-based Cyclic Amplifier (SbCA), for ultra-large upsampling tasks. The key of SbCA is the stroke vector amplifier, which decomposes the image into a series of strokes represented as vector graphics for magnification. Then, the detail completion module also restores missing details, ensuring high-fidelity image reconstruction. Our cyclic strategy achieves ultra-large upsampling by iteratively refining details with this unified SbCA model, trained only once for all, while keeping sub-scales within the training range. Our approach effectively addresses the distribution drift issue and eliminates artifacts, noise and blurring, producing high-quality, high-resolution super-resolved images. Experimental validations on both synthetic and real-world datasets demonstrate that our approach significantly outperforms existing methods in ultra-large upsampling tasks (e.g. $\times100$), delivering visual quality far superior to state-of-the-art techniques.
Abstract:In the complex landscape of traditional futures trading, where vast data and variables like real-time Limit Order Books (LOB) complicate price predictions, we introduce the FutureQuant Transformer model, leveraging attention mechanisms to navigate these challenges. Unlike conventional models focused on point predictions, the FutureQuant model excels in forecasting the range and volatility of future prices, thus offering richer insights for trading strategies. Its ability to parse and learn from intricate market patterns allows for enhanced decision-making, significantly improving risk management and achieving a notable average gain of 0.1193% per 30-minute trade over state-of-the-art models with a simple algorithm using factors such as RSI, ATR, and Bollinger Bands. This innovation marks a substantial leap forward in predictive analytics within the volatile domain of futures trading.
Abstract:Online question-and-answer (Q\&A) systems based on the Large Language Model (LLM) have progressively diverged from recreational to professional use. This paper proposed a Multi-Agent framework with environmentally reinforcement learning (E-RL) for code correction called Code Learning (Co-Learning) community, assisting beginners to correct code errors independently. It evaluates the performance of multiple LLMs from an original dataset with 702 error codes, uses it as a reward or punishment criterion for E-RL; Analyzes input error codes by the current agent; selects the appropriate LLM-based agent to achieve optimal error correction accuracy and reduce correction time. Experiment results showed that 3\% improvement in Precision score and 15\% improvement in time cost as compared with no E-RL method respectively. Our source code is available at: https://github.com/yuqian2003/Co_Learning
Abstract:In the domain of image layout representation learning, the critical process of translating image layouts into succinct vector forms is increasingly significant across diverse applications, such as image retrieval, manipulation, and generation. Most approaches in this area heavily rely on costly labeled datasets and notably lack in adapting their modeling and learning methods to the specific nuances of photographic image layouts. This shortfall makes the learning process for photographic image layouts suboptimal. In our research, we directly address these challenges. We innovate by defining basic layout primitives that encapsulate various levels of layout information and by mapping these, along with their interconnections, onto a heterogeneous graph structure. This graph is meticulously engineered to capture the intricate layout information within the pixel domain explicitly. Advancing further, we introduce novel pretext tasks coupled with customized loss functions, strategically designed for effective self-supervised learning of these layout graphs. Building on this foundation, we develop an autoencoder-based network architecture skilled in compressing these heterogeneous layout graphs into precise, dimensionally-reduced layout representations. Additionally, we introduce the LODB dataset, which features a broader range of layout categories and richer semantics, serving as a comprehensive benchmark for evaluating the effectiveness of layout representation learning methods. Our extensive experimentation on this dataset demonstrates the superior performance of our approach in the realm of photographic image layout representation learning.