Abstract:In the complex landscape of traditional futures trading, where vast data and variables like real-time Limit Order Books (LOB) complicate price predictions, we introduce the FutureQuant Transformer model, leveraging attention mechanisms to navigate these challenges. Unlike conventional models focused on point predictions, the FutureQuant model excels in forecasting the range and volatility of future prices, thus offering richer insights for trading strategies. Its ability to parse and learn from intricate market patterns allows for enhanced decision-making, significantly improving risk management and achieving a notable average gain of 0.1193% per 30-minute trade over state-of-the-art models with a simple algorithm using factors such as RSI, ATR, and Bollinger Bands. This innovation marks a substantial leap forward in predictive analytics within the volatile domain of futures trading.
Abstract:Sequential recommendation aims to estimate dynamic user preferences and sequential dependencies among historical user behaviors. Attention-based models have proven effective for sequential recommendation, but they suffer from inference inefficiency due to the quadratic computational complexity of attention mechanisms, particularly for long-range behavior sequences. Inspired by the recent success of state space models (SSMs) in control theory, which provide a robust framework for modeling and controlling dynamic systems, we present EchoMamba4Rec. Control theory emphasizes the use of SSMs for managing long-range dependencies and maintaining inferential efficiency through structured state matrices. EchoMamba4Rec leverages these control relationships in sequential recommendation and integrates bi-directional processing with frequency-domain filtering to capture complex patterns and dependencies in user interaction data more effectively. Our model benefits from the ability of state space models (SSMs) to learn and perform parallel computations, significantly enhancing computational efficiency and scalability. It features a bi-directional Mamba module that incorporates both forward and reverse Mamba components, leveraging information from both past and future interactions. Additionally, a filter layer operates in the frequency domain using learnable Fast Fourier Transform (FFT) and learnable filters, followed by an inverse FFT to refine item embeddings and reduce noise. We also integrate Gate Linear Units (GLU) to dynamically control information flow, enhancing the model's expressiveness and training stability. Experimental results demonstrate that EchoMamba significantly outperforms existing models, providing more accurate and personalized recommendations.