Abstract:Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, \textbf{we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive.} Our model, \textbf{OmniHuman-1.5}, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: \href{https://omnihuman-lab.github.io/v1_5/}
Abstract:Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in security sensitive systems. However, security-sensitive systems demand not only high perception performance, but also design robustness under various circumstances. Unlike prior works that study network robustness from software level, we investigate from hardware perspective about the impact of Single Event Upset (SEU) induced parameter perturbation (SIPP) on neural networks. We systematically define the fault models of SEU and then provide the definition of sensitivity to SIPP as the robustness measure for the network. We are then able to analytically explore the weakness of a network and summarize the key findings for the impact of SIPP on different types of bits in a floating point parameter, layer-wise robustness within the same network and impact of network depth. Based on those findings, we propose two remedy solutions to protect DNNs from SIPPs, which can mitigate accuracy degradation from 28% to 0.27% for ResNet with merely 0.24-bit SRAM area overhead per parameter.