Abstract:Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional Magnetic Resonance Imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain remains surprisingly under-explored due to the expansive preprocessing pipeline and large parameter search space for graph-based datasets construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets that span multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets within both static and dynamic contexts, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on dynamic as well as static graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven Neuroimaging, we offer a comprehensive open source Python package that includes the datasets, baseline implementations, model training, and standard evaluation. The package is publicly accessible at https://anwar-said.github.io/anwarsaid/neurograph.html .
Abstract:While machine learning models have achieved unprecedented success in real-world applications, they might make biased/unfair decisions for specific demographic groups and hence result in discriminative outcomes. Although research efforts have been devoted to measuring and mitigating bias, they mainly study bias from the result-oriented perspective while neglecting the bias encoded in the decision-making procedure. This results in their inability to capture procedure-oriented bias, which therefore limits the ability to have a fully debiasing method. Fortunately, with the rapid development of explainable machine learning, explanations for predictions are now available to gain insights into the procedure. In this work, we bridge the gap between fairness and explainability by presenting a novel perspective of procedure-oriented fairness based on explanations. We identify the procedure-based bias by measuring the gap of explanation quality between different groups with Ratio-based and Value-based Explanation Fairness. The new metrics further motivate us to design an optimization objective to mitigate the procedure-based bias where we observe that it will also mitigate bias from the prediction. Based on our designed optimization objective, we propose a Comprehensive Fairness Algorithm (CFA), which simultaneously fulfills multiple objectives - improving traditional fairness, satisfying explanation fairness, and maintaining the utility performance. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed CFA and highlight the importance of considering fairness from the explainability perspective. Our code is publicly available at https://github.com/YuyingZhao/FairExplanations-CFA .
Abstract:By virtue of the message-passing that implicitly injects collaborative effect into the embedding process, Graph Neural Networks (GNNs) have been successfully adopted in recommendation systems. Nevertheless, most of existing message-passing mechanisms in recommendation are directly inherited from GNNs without any recommendation-tailored modification. Although some efforts have been made towards simplifying GNNs to improve the performance/efficiency of recommendation, no study has comprehensively scrutinized how message-passing captures collaborative effect and whether the captured effect would benefit the prediction of user preferences over items. Therefore, in this work we aim to demystify the collaborative effect captured by message-passing in GNNs and develop new insights towards customizing message-passing for recommendation. First, we theoretically analyze how message-passing captures and leverages the collaborative effect in predicting user preferences. Then, to determine whether the captured collaborative effect would benefit the prediction of user preferences, we propose a recommendation-oriented topological metric, Common Interacted Ratio (CIR), which measures the level of interaction between a specific neighbor of a node with the rest of its neighborhood set. Inspired by our theoretical and empirical analysis, we propose a recommendation-tailored GNN, Augmented Collaboration-Aware Graph Convolutional Network (CAGCN*), that extends upon the LightGCN framework and is able to selectively pass information of neighbors based on their CIR via the Collaboration-Aware Graph Convolution. Experimental results on six benchmark datasets show that CAGCN* outperforms the most representative GNN-based recommendation model, LightGCN, by 9% in Recall@20 and also achieves more than 79% speedup. Our code is publicly available at https://github.com/YuWVandy/CAGCN.
Abstract:Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems. Hence, they have become the \emph{de facto} solution in a variety of decision-making scenarios. However, GNNs could yield biased results against certain demographic subgroups. Some recent works have empirically shown that the biased structure of the input network is a significant source of bias for GNNs. Nevertheless, no studies have systematically scrutinized which part of the input network structure leads to biased predictions for any given node. The low transparency on how the structure of the input network influences the bias in GNN outcome largely limits the safe adoption of GNNs in various decision-critical scenarios. In this paper, we study a novel research problem of structural explanation of bias in GNNs. Specifically, we propose a novel post-hoc explanation framework to identify two edge sets that can maximally account for the exhibited bias and maximally contribute to the fairness level of the GNN prediction for any given node, respectively. Such explanations not only provide a comprehensive understanding of bias/fairness of GNN predictions but also have practical significance in building an effective yet fair GNN model. Extensive experiments on real-world datasets validate the effectiveness of the proposed framework towards delivering effective structural explanations for the bias of GNNs. Open-source code can be found at https://github.com/yushundong/REFEREE.
Abstract:Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs. However, they may inherit historical prejudices from training data, leading to discriminatory bias in predictions. Although some work has developed fair GNNs, most of them directly borrow fair representation learning techniques from non-graph domains without considering the potential problem of sensitive attribute leakage caused by feature propagation in GNNs. However, we empirically observe that feature propagation could vary the correlation of previously innocuous non-sensitive features to the sensitive ones. This can be viewed as a leakage of sensitive information which could further exacerbate discrimination in predictions. Thus, we design two feature masking strategies according to feature correlations to highlight the importance of considering feature propagation and correlation variation in alleviating discrimination. Motivated by our analysis, we propose Fair View Graph Neural Network (FairVGNN) to generate fair views of features by automatically identifying and masking sensitive-correlated features considering correlation variation after feature propagation. Given the learned fair views, we adaptively clamp weights of the encoder to avoid using sensitive-related features. Experiments on real-world datasets demonstrate that FairVGNN enjoys a better trade-off between model utility and fairness. Our code is publicly available at https://github.com/YuWVandy/FairVGNN.
Abstract:In this paper, we introduce ChemicalX, a PyTorch-based deep learning library designed for providing a range of state of the art models to solve the drug pair scoring task. The primary objective of the library is to make deep drug pair scoring models accessible to machine learning researchers and practitioners in a streamlined framework.The design of ChemicalX reuses existing high level model training utilities, geometric deep learning, and deep chemistry layers from the PyTorch ecosystem. Our system provides neural network layers, custom pair scoring architectures, data loaders, and batch iterators for end users. We showcase these features with example code snippets and case studies to highlight the characteristics of ChemicalX. A range of experiments on real world drug-drug interaction, polypharmacy side effect, and combination synergy prediction tasks demonstrate that the models available in ChemicalX are effective at solving the pair scoring task. Finally, we show that ChemicalX could be used to train and score machine learning models on large drug pair datasets with hundreds of thousands of compounds on commodity hardware.
Abstract:Graph Neural Networks (GNNs) have achieved unprecedented success in learning graph representations to identify categorical labels of graphs. However, most existing graph classification problems with GNNs follow a balanced data splitting protocol, which is misaligned with many real-world scenarios in which some classes have much fewer labels than others. Directly training GNNs under this imbalanced situation may lead to uninformative representations of graphs in minority classes, and compromise the overall performance of downstream classification, which signifies the importance of developing effective GNNs for handling imbalanced graph classification. Existing methods are either tailored for non-graph structured data or designed specifically for imbalance node classification while few focus on imbalance graph classification. To this end, we introduce a novel framework, Graph-of-Graph Neural Networks (G$^2$GNN), which alleviates the graph imbalance issue by deriving extra supervision globally from neighboring graphs and locally from graphs themselves. Globally, we construct a graph of graphs (GoG) based on kernel similarity and perform GoG propagation to aggregate neighboring graph representations, which are initially obtained by node-level propagation with pooling via a GNN encoder. Locally, we employ topological augmentation via masking nodes or dropping edges to improve the model generalizability in discerning topology of unseen testing graphs. Extensive graph classification experiments conducted on seven benchmark datasets demonstrate our proposed G$^2$GNN outperforms numerous baselines by roughly 5\% in both F1-macro and F1-micro scores. The implementation of G$^2$GNN is available at \href{https://github.com/YuWVandy/G2GNN}{https://github.com/YuWVandy/G2GNN}.
Abstract:Recent years have witnessed the significant success of applying graph neural networks (GNNs) in learning effective node representations for classification. However, current GNNs are mostly built under the balanced data-splitting, which is inconsistent with many real-world networks where the number of training nodes can be extremely imbalanced among the classes. Thus, directly utilizing current GNNs on imbalanced data would generate coarse representations of nodes in minority classes and ultimately compromise the classification performance. This therefore portends the importance of developing effective GNNs for handling imbalanced graph data. In this work, we propose a novel Distance-wise Prototypical Graph Neural Network (DPGNN), which proposes a class prototype-driven training to balance the training loss between majority and minority classes and then leverages distance metric learning to differentiate the contributions of different dimensions of representations and fully encode the relative position of each node to each class prototype. Moreover, we design a new imbalanced label propagation mechanism to derive extra supervision from unlabeled nodes and employ self-supervised learning to smooth representations of adjacent nodes while separating inter-class prototypes. Comprehensive node classification experiments and parameter analysis on multiple networks are conducted and the proposed DPGNN almost always significantly outperforms all other baselines, which demonstrates its effectiveness in imbalanced node classification. The implementation of DPGNN is available at \url{https://github.com/YuWVandy/DPGNN}.
Abstract:Graph Neural Networks (GNNs) have achieved significant success in learning better representations by performing feature propagation and transformation iteratively to leverage neighborhood information. Nevertheless, iterative propagation restricts the information of higher-layer neighborhoods to be transported through and fused with the lower-layer neighborhoods', which unavoidably results in feature smoothing between neighborhoods in different layers and can thus compromise the performance, especially on heterophily networks. Furthermore, most deep GNNs only recognize the importance of higher-layer neighborhoods while yet to fully explore the importance of multi-hop dependency within the context of different layer neighborhoods in learning better representations. In this work, we first theoretically analyze the feature smoothing between neighborhoods in different layers and empirically demonstrate the variance of the homophily level across neighborhoods at different layers. Motivated by these analyses, we further propose a tree decomposition method to disentangle neighborhoods in different layers to alleviate feature smoothing among these layers. Moreover, we characterize the multi-hop dependency via graph diffusion within our tree decomposition formulation to construct Tree Decomposed Graph Neural Network (TDGNN), which can flexibly incorporate information from large receptive fields and aggregate this information utilizing the multi-hop dependency. Comprehensive experiments demonstrate the superior performance of TDGNN on both homophily and heterophily networks under a variety of node classification settings. Extensive parameter analysis highlights the ability of TDGNN to prevent over-smoothing and incorporate features from shallow layers with deeper multi-hop dependencies, which provides new insights towards deeper graph neural networks. Code of TDGNN: http://github.com/YuWVandy/TDGNN
Abstract:While image understanding on recognition-level has achieved remarkable advancements, reliable visual scene understanding requires comprehensive image understanding on recognition-level but also cognition-level, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge. In this paper, we propose a novel Cognitive Attention Network (CAN) for visual commonsense reasoning to achieve interpretable visual understanding. Specifically, we first introduce an image-text fusion module to fuse information from images and text collectively. Second, a novel inference module is designed to encode commonsense among image, query and response. Extensive experiments on large-scale Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate the effectiveness of our approach. The implementation is publicly available at https://github.com/tanjatang/CAN