Abstract:We present X-MDPT (Cross-view Masked Diffusion Prediction Transformers), a novel diffusion model designed for pose-guided human image generation. X-MDPT distinguishes itself by employing masked diffusion transformers that operate on latent patches, a departure from the commonly-used Unet structures in existing works. The model comprises three key modules: 1) a denoising diffusion Transformer, 2) an aggregation network that consolidates conditions into a single vector for the diffusion process, and 3) a mask cross-prediction module that enhances representation learning with semantic information from the reference image. X-MDPT demonstrates scalability, improving FID, SSIM, and LPIPS with larger models. Despite its simple design, our model outperforms state-of-the-art approaches on the DeepFashion dataset while exhibiting efficiency in terms of training parameters, training time, and inference speed. Our compact 33MB model achieves an FID of 7.42, surpassing a prior Unet latent diffusion approach (FID 8.07) using only $11\times$ fewer parameters. Our best model surpasses the pixel-based diffusion with $\frac{2}{3}$ of the parameters and achieves $5.43 \times$ faster inference.
Abstract:It is well known the adversarial optimization of GAN-based image super-resolution (SR) methods makes the preceding SR model generate unpleasant and undesirable artifacts, leading to large distortion. We attribute the cause of such distortions to the poor calibration of the discriminator, which hampers its ability to provide meaningful feedback to the generator for learning high-quality images. To address this problem, we propose a simple but non-travel diffusion-style data augmentation scheme for current GAN-based SR methods, known as DifAugGAN. It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training motivated by the successes of data augmentation schemes in the field to achieve good calibration. Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance. Extensive experimental evaluations demonstrate the superiority of DifAugGAN over state-of-the-art GAN-based SISR methods across both synthetic and real-world datasets, showcasing notable advancements in both qualitative and quantitative results.
Abstract:Currently, there are two popular approaches for addressing real-world image super-resolution problems: degradation-estimation-based and blind-based methods. However, degradation-estimation-based methods may be inaccurate in estimating the degradation, making them less applicable to real-world LR images. On the other hand, blind-based methods are often limited by their fixed single perception information, which hinders their ability to handle diverse perceptual characteristics. To overcome this limitation, we propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images. Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information and a series of newly-designed Cross-Perception Blocks (CPB) to combine this information for effective super-resolution reconstruction. Additionally, we introduce a contrastive regularization term (CR) that improves the model's learning capability by using newly generated HR and LR images as positive and negative samples for ground truth HR. Experimental results on challenging real-world SR datasets demonstrate that our approach significantly outperforms existing state-of-the-art methods in both qualitative and quantitative measures.
Abstract:Diffusion probabilistic models (DPM) have been widely adopted in image-to-image translation to generate high-quality images. Prior attempts at applying the DPM to image super-resolution (SR) have shown that iteratively refining a pure Gaussian noise with a conditional image using a U-Net trained on denoising at various-level noises can help obtain a satisfied high-resolution image for the low-resolution one. To further improve the performance and simplify current DPM-based super-resolution methods, we propose a simple but non-trivial DPM-based super-resolution post-process framework,i.e., cDPMSR. After applying a pre-trained SR model on the to-be-test LR image to provide the conditional input, we adapt the standard DPM to conduct conditional image generation and perform super-resolution through a deterministic iterative denoising process. Our method surpasses prior attempts on both qualitative and quantitative results and can generate more photo-realistic counterparts for the low-resolution images with various benchmark datasets including Set5, Set14, Urban100, BSD100, and Manga109. Code will be published after accepted.
Abstract:Self-supervised learning (SSL) approaches have shown promising capabilities in learning the representation from unlabeled data. Amongst them, momentum-based frameworks have attracted significant attention. Despite being a great success, these momentum-based SSL frameworks suffer from a large gap in representation between the online encoder (student) and the momentum encoder (teacher), which hinders performance on downstream tasks. This paper is the first to investigate and identify this invisible gap as a bottleneck that has been overlooked in the existing SSL frameworks, potentially preventing the models from learning good representation. To solve this problem, we propose "residual momentum" to directly reduce this gap to encourage the student to learn the representation as close to that of the teacher as possible, narrow the performance gap with the teacher, and significantly improve the existing SSL. Our method is straightforward, easy to implement, and can be easily plugged into other SSL frameworks. Extensive experimental results on numerous benchmark datasets and diverse network architectures have demonstrated the effectiveness of our method over the state-of-the-art contrastive learning baselines.
Abstract:Contrastive learning (CL) is widely known to require many negative samples, 65536 in MoCo for instance, for which the performance of a dictionary-free framework is often inferior because the negative sample size (NSS) is limited by its mini-batch size (MBS). To decouple the NSS from the MBS, a dynamic dictionary has been adopted in a large volume of CL frameworks, among which arguably the most popular one is MoCo family. In essence, MoCo adopts a momentum-based queue dictionary, for which we perform a fine-grained analysis of its size and consistency. We point out that InfoNCE loss used in MoCo implicitly attract anchors to their corresponding positive sample with various strength of penalties and identify such inter-anchor hardness-awareness property as a major reason for the necessity of a large dictionary. Our findings motivate us to simplify MoCo v2 via the removal of its dictionary as well as momentum. Based on an InfoNCE with the proposed dual temperature, our simplified frameworks, SimMoCo and SimCo, outperform MoCo v2 by a visible margin. Moreover, our work bridges the gap between CL and non-CL frameworks, contributing to a more unified understanding of these two mainstream frameworks in SSL. Code is available at: https://bit.ly/3LkQbaT.
Abstract:To avoid collapse in self-supervised learning (SSL), a contrastive loss is widely used but often requires a large number of negative samples. Without negative samples yet achieving competitive performance, a recent work has attracted significant attention for providing a minimalist simple Siamese (SimSiam) method to avoid collapse. However, the reason for how it avoids collapse without negative samples remains not fully clear and our investigation starts by revisiting the explanatory claims in the original SimSiam. After refuting their claims, we introduce vector decomposition for analyzing the collapse based on the gradient analysis of the $l_2$-normalized representation vector. This yields a unified perspective on how negative samples and SimSiam alleviate collapse. Such a unified perspective comes timely for understanding the recent progress in SSL.
Abstract:In this work, we propose a novel methodology for self-supervised learning for generating global and local attention-aware visual features. Our approach is based on training a model to differentiate between specific image transformations of an input sample and the patched images. Utilizing this approach, the proposed method is able to outperform the previous best competitor by 1.03% on the Tiny-ImageNet dataset and by 2.32% on the STL-10 dataset. Furthermore, our approach outperforms the fully-supervised learning method on the STL-10 dataset. Experimental results and visualizations show the capability of successfully learning global and local attention-aware visual representations.
Abstract:This paper considers an architecture referred to as Cascade Region Proposal Network (Cascade RPN) for improving the region-proposal quality and detection performance by \textit{systematically} addressing the limitation of the conventional RPN that \textit{heuristically defines} the anchors and \textit{aligns} the features to the anchors. First, instead of using multiple anchors with predefined scales and aspect ratios, Cascade RPN relies on a \textit{single anchor} per location and performs multi-stage refinement. Each stage is progressively more stringent in defining positive samples by starting out with an anchor-free metric followed by anchor-based metrics in the ensuing stages. Second, to attain alignment between the features and the anchors throughout the stages, \textit{adaptive convolution} is proposed that takes the anchors in addition to the image features as its input and learns the sampled features guided by the anchors. A simple implementation of a two-stage Cascade RPN achieves AR 13.4 points higher than that of the conventional RPN, surpassing any existing region proposal methods. When adopting to Fast R-CNN and Faster R-CNN, Cascade RPN can improve the detection mAP by 3.1 and 3.5 points, respectively. The code is made publicly available at \url{https://github.com/thangvubk/Cascade-RPN.git}.