Abstract:Nitrate ($\text{NO}_3^-$) is a form of dissolved inorganic nitrogen derived primarily from anthropogenic sources. The recent increase in river-discharged nitrate poses a major risk for coral bleaching in the Great Barrier Reef (GBR) lagoon. Although nitrate is an optically inactive (i.e., colourless) constituent, previous studies have demonstrated there is an indirect, non-causal relationship between water surface nitrate and water-leaving reflectance that is mediated through optically active water quality parameters such as total suspended solids and coloured dissolved organic matter. This work aims to advance our understanding of this relationship with an effort to measure time-series nitrate and simultaneous hyperspectral reflectance at the Fitzroy River estuary, Queensland, Australia. Time-series observations revealed periodic cycles in nitrate loads due to the tidal influence in the estuarine study site. The water surface nitrate loads were predicted from hyperspectral reflectance and water salinity measurements, with hyperspectral reflectance indicating the concentrations of optically active variables and salinity indicating the mixing of river water and seawater proportions. The accuracy assessment of model-predicted nitrate against in-situ measured nitrate values showed that the predicted nitrate values correlated well with the ground-truth data, with an $R^2$ score of 0.86, and an RMSE of 0.03 mg/L. This work demonstrates the feasibility of predicting water surface nitrate from hyperspectral reflectance and salinity measurements.
Abstract:Underwater image restoration is of significant importance in unveiling the underwater world. Numerous techniques and algorithms have been developed in the past decades. However, due to fundamental difficulties associated with imaging/sensing, lighting, and refractive geometric distortions, in capturing clear underwater images, no comprehensive evaluations have been conducted of underwater image restoration. To address this gap, we have constructed a large-scale real underwater image dataset, dubbed `HICRD' (Heron Island Coral Reef Dataset), for the purpose of benchmarking existing methods and supporting the development of new deep-learning based methods. We employ accurate water parameter (diffuse attenuation coefficient) in generating reference images. There are 2000 reference restored images and 6003 original underwater images in the unpaired training set. Further, we present a novel method for underwater image restoration based on unsupervised image-to-image translation framework. Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images. Extensive experiments with comparisons to recent approaches further demonstrate the superiority of our proposed method. Our code and dataset are publicly available at GitHub.
Abstract:Underwater image restoration attracts significant attention due to its importance in unveiling the underwater world. This paper elaborates on a novel method that achieves state-of-the-art results for underwater image restoration based on the unsupervised image-to-image translation framework. We design our method by leveraging from contrastive learning and generative adversarial networks to maximize mutual information between raw and restored images. Additionally, we release a large-scale real underwater image dataset to support both paired and unpaired training modules. Extensive experiments with comparisons to recent approaches further demonstrate the superiority of our proposed method.