Abstract:Nitrate ($\text{NO}_3^-$) is a form of dissolved inorganic nitrogen derived primarily from anthropogenic sources. The recent increase in river-discharged nitrate poses a major risk for coral bleaching in the Great Barrier Reef (GBR) lagoon. Although nitrate is an optically inactive (i.e., colourless) constituent, previous studies have demonstrated there is an indirect, non-causal relationship between water surface nitrate and water-leaving reflectance that is mediated through optically active water quality parameters such as total suspended solids and coloured dissolved organic matter. This work aims to advance our understanding of this relationship with an effort to measure time-series nitrate and simultaneous hyperspectral reflectance at the Fitzroy River estuary, Queensland, Australia. Time-series observations revealed periodic cycles in nitrate loads due to the tidal influence in the estuarine study site. The water surface nitrate loads were predicted from hyperspectral reflectance and water salinity measurements, with hyperspectral reflectance indicating the concentrations of optically active variables and salinity indicating the mixing of river water and seawater proportions. The accuracy assessment of model-predicted nitrate against in-situ measured nitrate values showed that the predicted nitrate values correlated well with the ground-truth data, with an $R^2$ score of 0.86, and an RMSE of 0.03 mg/L. This work demonstrates the feasibility of predicting water surface nitrate from hyperspectral reflectance and salinity measurements.
Abstract:Sea surface temperature (SST) is a fundamental physical parameter characterising the thermal state of sea surface. The Thermal Infrared Sensor (TIRS) onboard Landsat-8, with its 100-meter spatial resolution, offers a unique opportunity to uncover fine-scale coastal SST patterns that would otherwise be overlooked by coarser-resolution thermal sensors. In this study, we first develop an operational approach for SST retrieval from the TIRS sensor, and subsequently propose a novel algorithm for establishing daily SST climatology which serves as the baseline to detect anomalous SST events. We applied the proposed methods to temperate coastal waters in South Australia for the ten-year period from 2014 to 2023. For ground validation purposes, a buoy was deployed off the coast of Port Lincoln, South Australia, to record in-situ time-series SST. The spatiotemporal patterns of SST in the study area were analysed based on the ten years of satellite-derived SST imagery. The daily baseline climatology of SST with 100 m resolution was constructed, which allowed for the detection and analysis of anomalous SST events during the study period of 2014-2023. Our results suggest the following: (1) the satellite-derived SST data, generated with the proposed algorithm, aligned well with the in-situ measured SST values; (2) the semi-enclosed, shallow regions of Upper Spencer Gulf and Upper St Vincent Gulf showed higher temperatures during summer and cooler temperatures during winter than waters closer to the open ocean, resulting in a higher seasonal variation in SST; (3) the near-shore shallow areas in Spencer Gulf and St Vincent Gulf, and regions surrounding Kangaroo Island, were identified to have a higher probability of SST anomalies compared to the rest of the study area; and (4) anomalous SST events were more likely to happen during the warm months than the cool months.