Abstract:Large language models (LLMs) have been widely applied to emotional support conversation (ESC). However, complex multi-turn support remains challenging.This is because existing alignment schemes rely on sparse outcome-level signals, thus offering limited supervision for intermediate strategy decisions. To fill this gap, this paper proposes affective flow language model for emotional support conversation (AFlow), a framework that introduces fine-grained supervision on dialogue prefixes by modeling a continuous affective flow along multi-turn trajectories. AFlow can estimate intermediate utility over searched trajectories and learn preference-consistent strategy transitions. To improve strategy coherence and empathetic response quality, a subpath-level flow-balance objective is presented to propagate preference signals to intermediate states. Experiment results show consistent and significant improvements over competitive baselines in diverse emotional contexts. Remarkably, AFlow with a compact open-source backbone outperforms proprietary LMMs such as GPT-4o and Claude-3.5 on major ESC metrics. Our code is available at https://github.com/chzou25-lgtm/AffectiveFlow.
Abstract:In recent years, a variety of powerful agentic workflows have been applied to solve a wide range of human problems. However, existing workflow orchestration still faces key challenges, including high manual cost, reliance on specific operators/large language models (LLMs), and sparse reward signals. To address these challenges, we propose FlowSteer, an end-to-end reinforcement learning framework that takes a lightweight policy model as the agent and an executable canvas environment, automating workflow orchestration through multi-turn interaction. In this process, the policy model analyzes execution states and selects editing actions, while the canvas executes operators and returns feedback for iterative refinement. Moreover, FlowSteer provides a plug-and-play framework that supports diverse operator libraries and interchangeable LLM backends. To effectively train this interaction paradigm, we propose Canvas Workflow Relative Policy Optimization (CWRPO), which introduces diversity-constrained rewards with conditional release to stabilize learning and suppress shortcut behaviors. Experimental results on twelve datasets show that FlowSteer significantly outperforms baselines across various tasks.
Abstract:Aligning Large Language Models (LLMs) with human preferences is critical, yet traditional fine-tuning methods are computationally expensive and inflexible. While test-time alignment offers a promising alternative, existing approaches often rely on distorted trajectory-level signals or inefficient sampling, fundamentally capping performance and failing to preserve the generative diversity of the base model. This paper introduces LLMdoctor, a novel framework for efficient test-time alignment that operates via a patient-doctor paradigm. It integrates token-level reward acquisition with token-level flow-guided preference optimization (TFPO) to steer a large, frozen patient LLM with a smaller, specialized doctor model. Unlike conventional methods that rely on trajectory-level rewards, LLMdoctor first extracts fine-grained, token-level preference signals from the patient model's behavioral variations. These signals then guide the training of the doctor model via TFPO, which establishes flow consistency across all subtrajectories, enabling precise token-by-token alignment while inherently preserving generation diversity. Extensive experiments demonstrate that LLMdoctor significantly outperforms existing test-time alignment methods and even surpasses the performance of full fine-tuning approaches like DPO.