Abstract:The precise definition of causality is currently an open problem in philosophy and statistics. We believe causality should be defined as functions (in mathematics) that map causes to effects. We propose a reductive definition of causality based on Structural Functional Model (SFM). Using delta compression and contrastive forward inference, SFM can produce causal utterances like "X causes Y" and "X is the cause of Y" that match our intuitions. We compile a dataset of causal scenarios and use SFM in all of them. SFM is compatible with but not reducible to probability theory. We also compare SFM with other theories of causation and apply SFM to downstream problems like free will, causal explanation, and mental causation.
Abstract:Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.