Abstract:Precise lens structure segmentation is essential for the design of intraocular lenses (IOLs) in cataract surgery. Existing deep segmentation networks typically weight all pixels equally under cross-entropy (CE) loss, overlooking the fact that sub-regions of lens structures are inhomogeneous (e.g., some regions perform better than others) and that boundary regions often suffer from poor segmentation calibration at the pixel level. Clinically, experts annotate different sub-regions of lens structures with varying confidence levels, considering factors such as sub-region proportions, ambiguous boundaries, and lens structure shapes. Motivated by this observation, we propose an Adaptive Confidence-Wise (ACW) loss to group each lens structure sub-region into different confidence sub-regions via a confidence threshold from the unique region aspect, aiming to exploit the potential of expert annotation confidence prior. Specifically, ACW clusters each target region into low-confidence and high-confidence groups and then applies a region-weighted loss to reweigh each confidence group. Moreover, we design an adaptive confidence threshold optimization algorithm to adjust the confidence threshold of ACW dynamically. Additionally, to better quantify the miscalibration errors in boundary region segmentation, we propose a new metric, termed Boundary Expected Calibration Error (BECE). Extensive experiments on a clinical lens structure AS-OCT dataset and other multi-structure datasets demonstrate that our ACW significantly outperforms competitive segmentation loss methods across different deep segmentation networks (e.g., MedSAM). Notably, our method surpasses CE with 6.13% IoU gain, 4.33% DSC increase, and 4.79% BECE reduction in lens structure segmentation under U-Net. The code of this paper is available at https://github.com/XiaoLing12138/Adaptive-Confidence-Wise-Loss.
Abstract:Robot-assisted airway intubation application needs high accuracy in locating targets and organs. Two vital landmarks, nostrils and glottis, can be detected during the intubation to accommodate the stages of nasal intubation. Automated landmark detection can provide accurate localization and quantitative evaluation. The Detection Transformer (DeTR) leads object detectors to a new paradigm with long-range dependence. However, current DeTR requires long iterations to converge, and does not perform well in detecting small objects. This paper proposes a transformer-based landmark detection solution with deformable DeTR and the semantic-aligned-matching module for detecting landmarks in robot-assisted intubation. The semantics aligner can effectively align the semantics of object queries and image features in the same embedding space using the most discriminative features. To evaluate the performance of our solution, we utilize a publicly accessible glottis dataset and automatically annotate a nostril detection dataset. The experimental results demonstrate our competitive performance in detection accuracy. Our code is publicly accessible.