Abstract:Robot-assisted airway intubation application needs high accuracy in locating targets and organs. Two vital landmarks, nostrils and glottis, can be detected during the intubation to accommodate the stages of nasal intubation. Automated landmark detection can provide accurate localization and quantitative evaluation. The Detection Transformer (DeTR) leads object detectors to a new paradigm with long-range dependence. However, current DeTR requires long iterations to converge, and does not perform well in detecting small objects. This paper proposes a transformer-based landmark detection solution with deformable DeTR and the semantic-aligned-matching module for detecting landmarks in robot-assisted intubation. The semantics aligner can effectively align the semantics of object queries and image features in the same embedding space using the most discriminative features. To evaluate the performance of our solution, we utilize a publicly accessible glottis dataset and automatically annotate a nostril detection dataset. The experimental results demonstrate our competitive performance in detection accuracy. Our code is publicly accessible.
Abstract:In the realm of modern diagnostic technology, video capsule endoscopy (VCE) is a standout for its high efficacy and non-invasive nature in diagnosing various gastrointestinal (GI) conditions, including obscure bleeding. Importantly, for the successful diagnosis and treatment of these conditions, accurate recognition of bleeding regions in VCE images is crucial. While deep learning-based methods have emerged as powerful tools for the automated analysis of VCE images, they often demand large training datasets with comprehensive annotations. Acquiring these labeled datasets tends to be time-consuming, costly, and requires significant domain expertise. To mitigate this issue, we have embraced a semi-supervised learning (SSL) approach for the bleeding regions segmentation within VCE. By adopting the `Mean Teacher' method, we construct a student U-Net equipped with an scSE attention block, alongside a teacher model of the same architecture. These models' parameters are alternately updated throughout the training process. We use the Kvasir-Capsule dataset for our experiments, which encompasses various GI bleeding conditions. Notably, we develop the segmentation annotations for this dataset ourselves. The findings from our experiments endorse the efficacy of the SSL-based segmentation strategy, demonstrating its capacity to reduce reliance on large volumes of annotations for model training, without compromising on the accuracy of identification.